Методы определения содержания формальдегида. Методики определения формальдегида в воздухе

Группа К29

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕБЕЛЬ, ДРЕВЕСНЫЕ И ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Метод определения выделения формальдегида и других вредных летучих

химических веществ в климатических камерах

Furniture, timber and polymers.

Method for determination of formaldehyde and other volatile chemicals in

the air of climatic chambers

ОКС 79.97.140

Дата введения

Предисловие

1 РАЗРАБОТАН Всероссийским проектно-конструкторским технологическим институтом мебели (ВПКТИМ), Всероссийским научно-исследовательским институтом деревообрабатывающей промышленности (ВНИИДрев) и Научно-практическим Центром гигиенической экспертизы Госкомсанэпиднадзора России

ВНЕСЕН Техническим секретариатом Межгосударственного Совета по стандартизации , метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации

Наименование государства

Наименование национального органа по стандартизации

Республика Беларусь

Белстандарт

Республика Молдова

Молдовастандарт

Республика Казахстан

Госстандарт Республики Казахстан

Госстандарт Украины

Российская Федерация

Госстандарт России

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 23.08.95 N 448 межгосударственный стандарт ГОСТ введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 1996 года


4 ВВЕДЕН ВПЕРВЫЕ

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает метод определения в климатических камерах выделения формальдегида и других вредных летучих веществ в воздух из изделий мебели, древесно-стружечных и древесно-волокнистых плит, фанеры, деталей и заготовок из них, паркетных изделий, а также применяемых при их изготовлении полимерных, конструкционных, облицовочных, отделочных и клеевых материалов.

ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения

ГОСТ 1770-74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Технические условия

ГОСТ 3117-78 Аммоний уксуснокислый. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ Крахмал растворимый. Технические условия

ГОСТ Ацетилацетон. Технические условия

ГОСТ Мебель. Общие технические условия

ГОСТ Кресла для зрительных залов. Общие технические условия

ГОСТ Мебель для сидения и лежания. Общие технические условия

ГОСТ Мебель для учебных заведений. Технические условия

3 СРЕДСТВА ИСПЫТАНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

3.1 Климатичсские камеры с объемом рабочего пространства от 0,12 до 50 м

3.1.1 Конструкция камеры должна обеспечивать герметичность, автоматическое регулирование температуры, влажности . Для облицовки внутренних поверхностей камеры должны использоваться материалы, обладающие низкой сорбционной способностью (нержавеющий металл, стекло).

3.1.2 Вентиляционная система должна обеспечивать равномерную циркуляцию воздуха по всему рабочему объему камеры с установленными образцами.

3.1.3 В рабочем объеме камеры во время проведения испытаний должны поддерживаться следующие параметры:

температура воздуха - (23±2) °С;

относительная влажность воздуха - (45±5)%;

воздухообмен в час - 1±0,1.

Испытание паркетных изделий проводят при воздухообмене (0,5±0,05) в час.

3.2 Аспирационное устройство с расходомером для определения скорости или объема воздуха.

3.3 Поглотительные приборы типа Полежаева, Рихтера, с пористыми пластинками.

3.4 Хроматографы, спектрофотометры, электрофотоколориметры, обеспечивающие определение содержания летучего химического вещества в отобранном воздухе (выбираются в зависимости от вида определяемого вещества).

3.5 Весы лабораторные с наибольшим пределом взвешивания 500 г с погрешностью взвешивания ±0,02 г.

3.6 Весы аналитические с наибольшим пределом взвешивания 200 г с погрешностью взвешивания ±0,0005 г.

3.7 Барометр-анероид.

3.8 Секундомер с ценой деления секундной шкалы 0,2 с.

3.9 Психрометр или другой прибор для контроля за температурой и влажностью воздуха.

3.10 Универсальные измерительные инструменты для измерения размеров образцов с погрешностью ±1 мм.

3.11 Средства измерений, вспомогательные средства, материалы, химические реактивы, лабораторная посуда - в соответствии с методиками определения вредных летучих химических веществ, утвержденными органами санитарно-эпидемиологического надзора .


4 ОТБОР И ПОДГОТОВКА ОБРАЗЦОВ

4.1 Для проведения испытаний изделий мебели берут образцы в количестве, создающем заданную насыщенность объема камеры:

Для изделий корпусной мебели, столов, кроватей - 1 м площади поверхности образца на 1 м объема климатической камеры;

Для изделий мебели для сидения и лежания - 0,3 м площади поверхности образца на 1 м объема климатической камеры.

Площадь поверхности образцов вычисляют с погрешностью ±3%. Она включает в себя суммарную площадь с 2 сторон всех деталей мебели (поверхности задних стенок, дно ящиков, полок, поверхности за зеркалами, заглушины в изделиях мебели для сидения и лежания и др.).

Испытаниям в климатической камере, как правило, подвергают изделия мебели, отобранные для проведения физико-механических испытаний в соответствии с требованиями ГОСТ 16371, ГОСТ 19917, ГОСТ 22046, ГОСТ 16854.

4.2 Для испытания деталей и заготовок, паркетных изделий, а также конструкционных, облицовочных, отделочных и клеевых материалов берут не менее 3 образцов, изготовленных в соответствии с технической документацией.

4.2.1 Лакокрасочные материалы наносят на поверхность стекла, жести или древесины по нормам расхода, применяемые в производстве материалов, деталей и изделий.

4.2.2. Клеевые материалы наносят на поверхность стекла, жести или древесины по нормам расхода, применяемым в производстве, и приклеивают образец материала, для которого клей предназначен.

4.2.3 Образцы древесных плит и фанеры отбирают из зоны плиты, отстоящей от ее краев на расстоянии не менее 300 мм.

4.2.4 Образцы полимерных и облицовочных материалов представляют с размерами, создающими заданную насыщенность.

4.2.5 Площадь образца (по пластям с двух сторон), предназначенного для испытания в камерах объемом от 0,12 до 1 м включительно, рассчитывают с погрешностью ±3%, исходя из насыщенности 1 м площади поверхности образца на 1 м объема камеры.

Площадь образцов паркетных изделий определяют только с лицевой стороны. Насыщенность для паркетных изделий принимается равной 0,4 м площади поверхности образца на 1 м объема камеры. Размеры образцов по длине и ширине определяют исходя из внутренних размеров климатических камер.

4.2.6 Если проводят оценку выделения вредных летучих химических веществ через пласти, то кромки образцов должны иметь герметичное защитное покрытие (кромочный пластик, алюминиевая фольга, приклеенная с помощью силикатного клея и т. п.).

Кромки образцов паркетных изделий не защищают.

4.2.7 Транспортирование и хранение образцов - в соответствии с нормативными документами на испытываемые изделия, материалы.

4.3 Испытание образцов, изготовленных с помощью клеев или клеевых соединений, проводят не ранее чем через 7 сут после их изготовления, если иное не оговорено в нормативных документах.

Перед испытанием изделия мебели из древесины и древесных материалов выдерживают не менее 3 сут в помещении с относительной влажностью воздуха от 45 до 70% и температурой от 15 до 30 °С.

4.4 Образцы, представляемые на испытания, должны сопровождаться паспортом, содержащим их характеристику (приложение А).

5 ПРОВЕДЕНИЕ ИСПЫТАНИЙ

5.1 Подготовка к испытанию

5.1.1 Испытание древесно-стружечных, древесно-волокнистых плит, фанеры, деталей и заготовок из них, деталей паркетных изделий, конструкционных, облицовочных, отделочных, полимерных и клеевых материалов проводят в климатических камерах объемом от 0,12 до 1 м включительно.

Испытание изделий мебели проводят в камерах объемом более 1 м, позволяющих разместить эти изделия в соответствии с заданными условиями.

5.1.2 Образцы размещают в камере на подставку или другим способом, обеспечивающим свободную циркуляцию воздуха, при этом площадь контакта не должна превышать 0,5% площади поверхности образца.

5.1.3 Образцы паркетных изделий размещают на полу камеры, лицевая поверхность образцов должна быть повернута вверх. Допускается другой способ установки образцов, при этом их нерабочая поверхность должна быть защищена газонепроницаемым материалом (фольга и др.).

5.1.4 Изделия мебели размещают в камере, равномерно распределяя их по площади пола. Изделия должны быть расположены на расстоянии не менее 0,1 м друг от друга и от стен камеры. Двери изделий должны быть открыты на угол не менее 30°, ящики выдвинуты не менее чем на треть их длины.

5.1.5 В камерах объемом более 1 м (рисунок 1) закрепляют трубки для отбора проб воздуха и подсоединяют их к соответствующим выходным отверстиям камеры.

В камерах объемом до 1 м включительно отбор проб воздуха может осуществляться через одно выходное отверстие.

5.1.6 После размещения образцов герметично закрывают двери камеры. Включают систему кондиционирования и вентиляции воздуха и после достижения заданных параметров устанавливают автоматический режим работы камеры.

Контроль рабочих параметров воздуха осуществляют по приборам, входящим в конструкцию камеры, и по контрольному прибору, работающему автономно.

5.2 Проведение испытаний в камерах объемом до 1 м включительно

5.2.1 На протяжении всего испытания с заданной периодичностью проводят отбор проб воздуха из рабочего объема камеры.

Первый отбор проб воздуха проводится через 24 ч с момента стабилизации параметров воздуха в камере в соответствии с требованиями 3.1.3. Второй, третий и последующие отборы проводят через каждые 24 ч в течение 5 сут от начала испытания.

5.2.2 В таком случае, когда по результатам трех последовательных отборов устанавливают, что концентрация летучих веществ в камере постоянна (т. е. среднее квадратическое отклонение результатов измерений составляет не более 15%), испытание прекращают до истечения 5 сут.

5.2.3 Одновременно с отбором проб из климатической камеры проводится отбор воздуха, подаваемого в камеру.

5.2.4 Отбор проб воздуха осуществляют с помощью аспирационного устройства (3.2) и поглотительных приборов (3.3), выбираемых в зависимости от вида контролируемых веществ и методики определения их концентрации.

5.2.5 Пробы воздуха анализируют в день отбора в соответствии с методиками измерения концентрации вредных летучих химических веществ, утвержденными органами санитарно-эпидемиологического надзора. Для определения концентрации вредных летучих химических веществ используют фотоэлектроколориметры, спектрофотометры или хроматографы любого типа, обеспечивающие необходимую разрешающую способность и погрешность измерения (3.4 и 3.5).

5.2.6 Методика определения формальдегида с ацетилацетоновым реактивом (колометрический метод) приведена в приложении Б. Для определения концентрации формальдегида используют спектрофотометр или фотоэлектроколориметр.

5.2.7 Результаты измерений заносят в рабочий журнал.

5.3 Проведение испытаний изделий мебели в камерах объемом более 1 м

5.3.1 Первый отбор проб воздуха из камеры и контрольный отбор воздуха при входе в камеру проводят через 72 ч после установления рабочего режима воздуха в камере.

5.3.2 Последующие отборы проб воздуха проводят через каждые 24 ч.

5.3.3 В том случае, когда по результатам трех последовательных отборов установлено, что концентрация контролируемых летучих веществ постоянна (среднее квадратическое отклонение результатов измерений не превышает 15%), испытание прекращают.

По истечении 21 сут испытание прекращают независимо от значения концентрации контролируемых летучих веществ.

5.3.4 Отбор проб воздуха проводится в шести точках, показанных на рисунке 1, расположенных на двух уровнях высоты камеры.

I - уровни отбора проб воздуха (750; 1500 мм); // - трубки для отбора проб

воздуха из камеры; 1 ; 2; 3; 4; 5; 6 - точки отбора проб воздуха

Рисунок 1

На каждом уровне определяют по три точки, равномерно распределенные по длине и ширине камеры.

Допускается проводить отбор проб воздуха из меньшего количества точек, но не менее двух, находящихся на разных уровнях высоты.

5.3.5 Отбор проб воздуха и их анализ проводят в соответствии с 5.2.3-5.2.7.

6 ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЙ

6.1 Концентрацию летучих химических веществ в воздухе климатической камеры в миллиграмм на кубический метр рассчитывают в соответствии с методиками измерения контролируемых веществ (5.2.5).

6.2 Абсолютное значение концентрации летучего химического вещества , выделяемого испытываемым образцом в воздух климатической камеры, вычисляют по формуле

где - концентрация летучего вещества в воздухе климатической камеры, мг/ м;

Концентрация летучего вещества в воздухе, входящем в камеру, мг/ м.

6.3 Значение концентрации летучего химического вещества, выделившегося в воздух климатической камеры объемом до 1 м включительно, находят как среднее арифметическое значение результатов испытаний не менее трех образцов по формуле

где - количество повторностей наблюдения.

6.4 Среднее квадратическое отклонение результатов измерений , %, определяют по формуле

. (3)

6.5 Концентрацию летучего химического вещества при каждом измерении, проводимом в соответствии с 5.3.1, 5.3.2 и 5.3.4 в камерах объемом более 1 м, определяют как среднее арифметическое значение результатов измерений в различных точках камеры по формуле (2).

6.6 Окончательное значение концентрации вредного летучего химического вещества в климатических камерах объемом более 1 м при испытании изделий мебели рассчитывают как среднее арифметическое значение () результатов измерений при трех последних отборах воздуха, рассчитанные по формулам (1) и (2). Среднее квадратическое отклонение определяют по формуле (3).

В случае, когда концентрация вещества постоянна (5.3.3) в трех последовательных измерениях, среднее арифметическое значение принимают за характеристику контролируемого параметра.

В случае, когда концентрация вещества непостоянна (снижается или увеличивается), за характеристику принимают значение концентрации, полученное при последнем отборе и рассчитанное по формуле (1).

6.7 Оценку результатов испытания проводят путем их сравнения с предельно допустимыми концентрациями вредных веществ в атмосферном воздухе, утвержденными в установленном порядке органами Государственного санитарно-эпидемиологического надзора.

6.8 Образцы считают выдержавшими испытание, если полученные результаты будут меньше или равны нормам, установленным в нормативных документах на продукцию.

6.9 Результаты испытаний оформляют протоколом (приложение В).

Форма паспорта образца, представляемого на испытания

ПАСПОРТ

наименование образца, изделия, набора мебели, проект, обозначение,

индекс (при наличии)

Наименование изготовителя (заказчика)

Дата изготовления образца

Наименование нормативной документации на продукцию

для изделий и материалов

Характеристика образцов:

Образец изготовлен с применением следующих материалов:

1 Плитных

Наименование материала

Обозначение (марка) по НД

эмиссии формальдегида

по перфоратору

Размер образца,

Примечание*

Древесно-стружечная

Древесно-волокнистая плита

* При необходимости указывается вид связующего и другие характерные особенности образца.

2 Облицовочные материалы, настилочные и другие полимерные материалы

Наименование материала

Обозначение нормативной документации

Основной химический состав (при необходимости)

Размер образца,

Сведения

о разрешении

к применению

Наименование материала

Обозначение нормативной документации

Размер образца,

Сведения

о разрешении

материала

к применению

Примечание - В зависимости от вида и цели испытания приводятся другие сведения по согласованию с испытательной лабораторией.

Подписи руководителя заказчика и лица, ответственного

за связь с испытательной лабораторией (центром),

расшифровка подписей, дата

ПРИЛОЖЕНИЕ Б

(обязательное)

МЕТОДИКА ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА

С АЦЕТИЛАЦЕТОНОВЫМ РЕАКТИВОМ

Б.1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая методика предназначена для определения концентрации формальдегида в воздухе жилых помещений и климатических камер.

Б.2 СУЩНОСТЬ И ХАРАКТЕРИСТИКА МЕТОДА

Метод основан на реакции взаимодействия формальдегида с ацетилацетоновым реактивом в среде уксуснокислого аммония с образованием продукта, окрашенного в желтый цвет.

Нижний предел обнаружения формальдегида 0,001 мг в 10 см анализируемого раствора.

Погрешность определения ±10%.

Диапазон измеряемых концентраций формальдегида в атмосферном воздухе, воздухе закрытых помещений и климатических камер от 0,008 до 1,3 мг/м при отборе воздуха не менее 120 дм.

Определению формальдегида не мешают метиловый и этиловый спирты, этиленгликоль, сероводород, аммиак .

Б. З СРЕДСТВА ИЗМЕРЕНИЙ И ВСПОМОГАТЕЛЬНЫЕ УСТРОЙСТВА

Б.3.1 Аспирационное устройство, обеспечивающее скорость потока воздуха 2 дм/мин.

Б.3.2 Спектрофотометр или фотоэлектроколориметр со светофильтром с максимумом светопоглощения при длине волны 412 нм и кюветой шириной рабочего слоя 10 мм.

Б.3.3 Колбы мерные 50, 250 и 1000 см по ГОСТ 1770.

Б.3.4 Колбы конические 100 см по ГОСТ 1770.

Б.3.5 Поглотительные приборы типа Полежаева, Рихтера.

Б.4 РЕАКТИВЫ И РАСТВОРЫ

Б.4.1 Ацетилацетон, ч. д.а. по ГОСТ 10259.

Б.4.2 Кислота уксусная, ледяная х. ч.

Б.4.3 Ацетат аммония ч. д.а. по ГОСТ 3117.

Б.4.4 Формалин, 40%-ный раствор формальдегида.

Б.4.5 Натр едкий, ч. д.а. 30%-ный раствор.

Б.4.6 Кислота соляная, конц. ч. д.а по ГОСТ 3118, разбавленная 1:5.

Б.4.7 Натрий серноватистокислый NSO· фиксанал, 0,1N раствор.

Б.4.8 Йод, фиксанал 0,1 N раствор.

Б. 4.9 Крахмал растворимый по ГОСТ 10163, 1%-ный раствор.

Б.4.10 Ацетилацетоновый реактив: 200 г ацетата аммония растворяют в 800 см воды в мерной колбе на 1 дм. К раствору добавляют 3 см ацетилацетона, 5 см уксусной кислоты и раствор в колбе доводят водой до метки (поглотительный раствор).

Б.4.11 Исходный раствор для градуировки: 5 см формалина вносят в мерную колбу 250 см и доводят водой до метки. Затем определяют содержание формальдегида в этом растворе. Для этого 5 см раствора помещают в коническую колбу 250 см с притертой пробкой, приливают 20 см 0,1 N раствора йода и по каплям вносят 30%-ный раствор едкого натра до появления устойчивой бледно-желтой окраски. Колбу оставляют на 10 мин, затем осторожно подкисляют раствор 2,5 см соляной кислоты (разбавленной 1:5), оставляют на 10 мин в темноте и оттитровывают избыток йода 0,1 N раствором тиосульфата натрия. Когда раствор станет светло-желтым, добавляют несколько капель крахмала. Предварительно устанавливают количество тиосульфата, расходуемое на титрование 20 см 0,1 N раствора йода. По разности количества, израсходованного на контрольное титрование и избытком йода, не вошедшего в реакцию с формальдегидом, устанавливают количество йода, которое пошло на окисление формальдегида. 1 см 0,1 N раствора йода соответствует 1,5 мг формальдегида. Установив содержание формальдегида в 1 см раствора, соответствующим разведением водой готовят исходный и рабочий растворы формальдегида содержанием соответственно 0,1 мг/см и 0,01 мг/см. Содержание формальдегида в растворах устанавливают титрометрически.

Б.5 ОТБОР ПРОБ

Б.5.1 При испытании в климатических камерах полимерных материалов и изделий подготовка образцов и порядок отбора проб осуществляется в соответствии с разделами 4 и 5 настоящего стандарта.

Б.5.2 Для определения максимальной разовой концентрации формальдегида в воздухе климатической камеры или закрытого помещения воздух аспирируют со скоростью 2 дм/мин в объеме 60-120 дм через два последовательно соединенных поглотительных прибора типа Полежаева, Рихтера, заполненных по 7 см поглотительного раствора и 3 см дистиллированной воды. В процессе отбора пробы образуется нелетучее производное формальдегида.

Б.5.3 Одновременно отбирается контрольная проба воздуха, подаваемого в климатическую камеру.

Отбор пробы осуществляется в соответствии с 5.2.

Б.6 ХОД АНАЛИЗА

Б.6.1 Отобранные пробы помещают в водяную баню, нагретую до 40 °С, и выдерживают в течение 30 мин.

Б.6.2 После охлаждения проб измеряют оптическую плотность окрашенных растворов с использованием спектрофотометра или фотоэлектроколориметра при длине волны 412 нм в кюветах шириной рабочего слоя 10 мм. Оценку количественного содержания формальдегида в пробе проводят по градуировочной характеристике.

Б.7 УСТАНОВЛЕНИЕ ГРАДУИРОВОЧНОЙ ХАРАКТЕРИСТИКИ

Б.7.1 В мерную пробирку на 10 см пипеткой на 2 см вносят рабочий раствор формальдегида (Б.4.11), воду пипеткой на 5 см, доводят поглотительным раствором до метки и готовят растворы для градуировки в соответствии с таблицей Б.1 (при определении низких концентраций формальдегида) и таблицей Б.2 (при определении высоких концентраций формальдегида).

Растворы, см

Рабочий раствор формальдегида с содержанием 0,01 мг/см

Ацетилацетоновый реактив

По 7 см в каждую пробирку

Примечание - При приготовлении растворов 1 и 2 пользоваться капиллярной пипеткой или автоматическим микродозатором.

Растворы, см

Номера растворов для градуировки

Исходный раствор формальдегида с содержанием 0,1 мг/см

Ацетилацетоновый реактив

По 7 см в каждую пробирку

Б.7.2 Растворы для градуировки нагревают на водяной бане в течение 30 мин при Т - 40 °С, охлаждают и измеряют в них оптическую плотность (длина волны равна 412 нм, ширина рабочего слоя кюветы 10 мм). - атмосферное давление, мбар;

- объем пробы воздуха, м;

Оптическая плотность анализируемой пробы, рассчитанная как разность между суммой оптических плотностей анализируемых растворов в 2 поглотителях и нулевого (холостого) раствора;

0,00371 - коэффициент приведения к нормальным условиям.

Форма протокола испытаний

наименование аккредитованной испытательной лаборатории (центра)

номер и дата аттестата аккредитации в системе сертификации ГОСТ Р

почтовый адрес и телефон испытательной лаборатории (центра)

УТВЕРЖДАЮ

Руководитель испытательной лаборатории (центра)

расшифровка подписи

ПРОТОКОЛ N

вид испытания

наименование и обозначение испытываемых образцов

1 Предприятие-изготовитель

наименование и адрес

2 Дата изготовления и отбора образцов

3 Основание для проведения испытания

номер и дата письма

(договора) заказчика

4 Обозначение нормативной документации на продукцию

5 Определяемые показатели

перечень определяемых

контролируемых показателей

6 Перечень (обозначение) нормативных документов

на методы испытания

7 Перечень аттестованного испытательного оборудования

обозначение, номер и дата аттестата (свидетельства, клейма)

8 Характеристика образца

9 Условия проведения испытания

температура и относительная

влажность воздуха в камере, насыщенность, воздухообмен

10 Результаты испытания

текст или таблицы

с указанием нормативных значений

11 Заключение

Подписи исполнителей

должность

расшифровка подписи

Текст документа сверен по:

официальное издание

М.: ИПК Издательство стандартов, 1995


стр. 1



стр. 2



стр. 3



стр. 4



стр. 5



стр. 6



стр. 7



стр. 8



стр. 9



стр. 10



стр. 11



стр. 12



стр. 13



стр. 14



стр. 15



стр. 16



стр. 17



стр. 18



стр. 19



стр. 20



стр. 21



стр. 22



стр. 23

ФЕДЕРАЛЬНОЕ АГЕНТСТВО
ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Протектор», Закрытым акционерным обществом «Центр исследования и контроля воды», группой компаний «Люмэкс» (ООО «Люмэкс», ООО «Люмэкс-маркетинг»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 343 «Качество воды»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 ноября 2012 г. № 1252-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемом информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОДА

Методы определения содержания формальдегида

Water. Methods for determination of formaldehyde content

Дата введения - 2014-01-01

1 Область применения

Настоящий стандарт распространяется на питьевую воду, в том числе расфасованную в емкости, поверхностные и подземные природные воды, сточные воды, в том числе очищенные, и устанавливает следующие методы определения содержания формальдегида:

Фотометрический метод определения содержания формальдегида массовой концентрации от 0,025 мг/дм 3 до 25 мг/дм 3 в пробах питьевых и природных вод и массовой концентрации от 0,05 мг/дм 3 до 400 мг/дм 3 в пробах сточных вод (метод А);

Метод высокоэффективной жидкостной хроматографии (далее - ВЭЖХ) определения массовой концентрации формальдегида от 0,002 мг/дм 3 до 10 мг/дм 3 в пробах питьевых и природных вод (метод Б);

Флуориметрический метод определения содержания формальдегида от 0,02 мг/дм 3 до 50 мг/дм 3 в пробах питьевых, природных и сточных вод (метод В).

При определении содержания формальдегида в пробах питьевых и природных вод с массовой концентрацией до 10 мг/дм 3 арбитражным является метод Б, свыше 10 мг/дм 3 - метод В, а в пробах сточных вод - метод А.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

4 Требования к условиям проведения испытаний

4.1 При подготовке к выполнению измерений и при их проведении необходимо соблюдать условия, установленные в руководствах по эксплуатации или в паспортах средств измерений и вспомогательного оборудования.

Измерения объемов воды и растворов проводят при температуре окружающей среды от 15 °С до 25 °С.

4.2 Лаборатории, проводящие анализ, включая требования к испытателям, должны соответствовать требованиям ГОСТ ИСО/МЭК 17025 .

5 Определение массовой концентрации формальдегида фотометрическим методом (метод А)

5.1 Сущность метода

Метод основан на взаимодействии формальдегида с ацетилацетоном в среде уксуснокислого аммония с образованием соединения, окрашенного в желтый цвет. Измерение оптической плотности полученного окрашенного раствора проводят при длине волны (414 ± 20) нм.

Определению не мешает 10-кратный избыток фенола и 1000-кратный избыток метанола. Мешающее влияние, оказываемое цветностью анализируемых проб, а также присутствием ионов металлов, образующих с ацетилацетоном окрашенные комплексы, устраняют отгонкой формальдегида. Мешающее влияние мутности анализируемых проб, кроме того, устраняют учетом фоновой поправки.

5.2 Средства измерений, вспомогательное оборудование, реактивы, материалы

Фотометр, спектрофотометр, фотоэлектроколориметр любого типа (далее - прибор), позволяющий измерять оптическую плотность или коэффициент пропускания растворов в оптических кюветах с толщиной поглощающего слоя 5 см при длине волны (414 ± 20) нм, с пределами допускаемой основной абсолютной погрешности измерений коэффициента пропускания не более ± 3 %.

Цилиндры мерные 1-5-2, 1-10-2, 1-50-2, 1-100-2, 1-250-2 или любого другого исполнения по ГОСТ 1770 .

Установка для перегонки формальдегида, состоящая из стеклянной лабораторной посуды по ГОСТ 25336 (см. приложение А).

Ротационный испаритель любого типа, обеспечивающий скорость вращения от 0,3 до 3 с -1 (от 20 до 200 об/мин) и поддержание температуры от 50 °С до 60 °С с пределом допускаемой абсолютной погрешности ± 2 °С.

Воронка лабораторная, колбы плоскодонные, колбы круглодонные, стаканы химические по ГОСТ 25336 .

Холодильник бытовой любого типа, обеспечивающий поддержание температуры от 2 °С до 8 °С.

Баня водяная любого типа.

Колбонагреватель или электрическая плитка с закрытой спиралью по ГОСТ 14919 .

Фильтры мембранные с диаметром пор 0,45 мкм.

Примечание - Допускается применять другие средства измерений, вспомогательные устройства, реактивы и материалы, в том числе импортные, с метрологическими и техническими характеристиками не хуже указанных.

5.3 Подготовка к проведению измерений

5.3.1 Приготовление основного раствора формальдегида с массовой концентрацией 100 мг/дм 3

В мерную колбу вместимостью 50 см 3 вносят 5 см 3 СО состава раствора формальдегида с номинальной массовой концентрацией 1 мг/см 3 (см. 5.2) и доводят содержимое колбы до метки дистиллированной водой.

Примечание - Допускается использовать СО состава раствора формальдегида другого номинального значения массовой концентрации, а также изменять конечный объем основного раствора формальдегида при условии приготовления градуировочных растворов с указанными значениями концентрации формальдегида.

5.3.2 Приготовление рабочего раствора формальдегида с массовой концентрацией 1 мг/дм 3

Рабочий раствор формальдегида с массовой концентрацией 1 мг/дм 3 готовят разбавлением в 100 раз основного раствора формальдегида (см. 5.3.1). Например, в мерную колбу на 100 см 3 вносят 1 см 3 основного раствора формальдегида (см. 5.3.1) и доводят объем раствора в колбе до метки дистиллированной водой.

Рабочий раствор формальдегида готовят в день использования.

5.3.3 Приготовление ацетилацетон-аммиачного реагента

В мерную колбу вместимостью 100 см 3 вносят 15 г уксуснокислого аммония и растворяют его в небольшом количестве дистиллированной воды, затем добавляют 0,3 см 3 концентрированной уксусной кислоты, 1 см 3 ацетилацетона, доводят до метки дистиллированной водой и перемешивают.

Срок хранения приготовленного реагента в емкости из темного стекла - не более 1 мес.

5.3.4 Приготовление раствора серной кислоты, разбавленной 1:1

Один объем серной кислоты, аккуратно, при перемешивании, растворяют в одном объеме дистиллированной воды. Например, для приготовления 100 см 3 раствора в мерную колбу вместимостью 100 см 3 вносят 50 см 3 дистиллированной воды и осторожно, при перемешивании, добавляют 50 см 3 серной кислоты.

Срок хранения раствора в емкости из стекла - не более 1 года.

5.3.5 Приготовление градуировочных растворов

5.3.5.1 В мерные колбы вместимостью 25 см 3 помещают 8 - 9 см 3 дистиллированной воды, вносят градуированной пипеткой соответственно: 0,0; 0,5; 1,0; 1,5; 2,0; 4,0; 6,0; 8,0; 10,0 см 3 рабочего раствора формальдегида (см. 5.3.2), затем в каждую колбу приливают по 5 см 3 ацетилацетон-аммиачного реагента (см. 5.3.3), доводят до метки дистиллированной водой и перемешивают. Значения массовых концентраций формальдегида в градуировочных растворах составляют соответственно: 0,0; 0,02; 0,04, 0,06; 0,08; 0,16; 0,24; 0,32; 0,40 мг/дм 3 .

Градуировочный раствор, не содержащий формальдегида (с массовой концентрацией формальдегида, равной нулю), является холостой пробой.

Для приготовления градуировочных растворов в мерных колбах вместимостью 50 см 3 вносят соответственно в каждую мерную колбу удвоенный объем рабочего градуировочного раствора.

Растворы готовят в день использования.

5.3.5.2 Каждый из приготовленных градуировочных растворов и холостую пробу помещают в водяную баню с температурой 60 °С - 65 °С и выдерживают 10 мин. Затем колбы охлаждают до комнатной температуры, например, в холодной водяной бане или под струей холодной воды.

5.3.6 Подготовка прибора

Подготовку прибора (спектрофотометра или фотоэлектроколориметра) к работе проводят в соответствии с руководством (инструкцией) по эксплуатации прибора.

5.3.7 Градуировка прибора

Измеряют оптическую плотность градуировочных растворов и холостой пробы (см. 5.3.5) три раза при длине волны (414 ± 20) нм в оптической кювете с толщиной поглощающего слоя 5 см, используя в качестве раствора сравнения дистиллированную воду.

Для каждого градуировочного раствора и холостой пробы рассчитывают среднеарифметическое значение полученных значений оптической плотности.

Устанавливают градуировочную характеристику в виде зависимости среднеарифметических значений оптической плотности градуировочных растворов за вычетом среднего арифметического значения оптической плотности холостой пробы от массовой концентрации формальдегида. При этом:

Если прибор снабжен компьютерной (микропроцессорной) системой сбора и обработки информации, то коэффициент градуировочной характеристики (К ) устанавливают в соответствии с руководством (инструкцией) по эксплуатации прибора, в противном случае его рассчитывают методом наименьших квадратов по формуле

где С i i

A i i -го градуировочного раствора за вычетом среднего арифметического значения оптической плотности холостой пробы, единицы оптической плотности;

l - число градуировочных растворов.

5.3.8 Контроль приемлемости градуировочной характеристики

Контроль приемлемости градуировочной характеристики с использованием компьютерной (микропроцессорной) системы сбора и обработки информации проводят в соответствии с руководством (инструкцией) по эксплуатации прибора.

Если прибор не имеет программного обеспечения, предусматривающего проведение автоматизированной градуировки, то полученную градуировочную характеристику контролируют, используя коэффициент корреляции (должен быть не менее 0,98), рассчитывая для каждого градуировочного раствора значение коэффициента градуировочной характеристики К i по формуле

где С i - массовая концентрация формальдегида в i -м градуировочном растворе, мг/дм 3 ;

A i - среднее арифметическое значение оптической плотности i -го градуировочного раствора за вычетом среднего арифметического значения оптической плотности холостой пробы, единицы оптической плотности.

Результаты контроля признаются удовлетворительными, если выполняется условие

где К i - значение коэффициента градуировочной характеристики i -го градуировочного раствора, рассчитанного по формуле (2);

К - значение коэффициента градуировочной характеристики, рассчитанного по формуле (1) при градуировке прибора;

N - норматив контроля приемлемости градуировочной характеристики, равный 12 %.

Если условие (3) не выполняется, то установление градуировочной характеристики повторяют.

5.3.9 Контроль стабильности градуировочной характеристики

Стабильность градуировочной характеристики контролируют не реже одного раза в три месяца, а также при замене реактивов. Для контроля используют не менее трех градуировочных растворов по 5.3.5.

Проводят измерение оптической плотности контрольных градуировочных растворов по 5.3.7 и по полученным значениям оптической плотности, используя градуировочную характеристику (см. 5.3.7), определяют массовую концентрацию формальдегида в контрольных градуировочных растворах.

Градуировочную характеристику считают стабильной при выполнении условия

где С

С к - значение массовой концентрации формальдегида в контрольном градуировочном растворе (см. 5.3.5), мг/дм 3 ;

G - норматив контроля стабильности градуировочной характеристики, равный 12 %.

Если условие стабильности градуировочной характеристики не выполняется только для одного контрольного градуировочного раствора, то этот раствор готовят заново и проводят повторные измерения. Результаты повторного контроля считают окончательными.

Если условие стабильности градуировочной характеристики не выполняется, то установление градуировочной характеристики проводят заново. Градуировку также проводят после ремонта прибора.

5.4 Порядок проведения измерений

5.4.1 Определение формальдегида в питьевой и природной воде

5.4.1.1 В перегонную колбу вместимостью 250 см 3 вносят 200 см 3 пробы анализируемой воды, добавляют 1 см 3 разбавленной серной кислоты (см. 5.3.4), затем соединяют элементы установки для перегонки формальдегида (см. приложение А), включают нагревание и отгоняют в мензурку 100 см 3 отгона.

5.4.1.2 В мерную колбу вместимостью 25 см 3 вносят 15 - 20 см 3 отгона (см. 5.4.1.1), добавляют 5 см 3 ацетилацетон-аммиачного реагента (см. 5.3.3) и доводят содержимое колбы до метки отгоном по 5.4.1.1.

Холостую пробу готовят по 5.3.5.1 одновременно с серией проб анализируемой воды.

Затем подготовленные пробы анализируемой воды и холостую пробу нагревают и охлаждают, как указано в 5.3.5.2, после чего измеряют их оптическую плотность при длине волны (414 ± 20) нм относительно дистиллированной воды.

5.4.1.3 Если измеренное значение оптической плотности пробы анализируемой воды превышает верхнюю границу градуировочной характеристики, то в мерную колбу вместимостью 25 см 3 вносят пипеткой меньший объем отгона (V a н), но не менее 0,5 см 3 , добавляют 5 см 3 ацетилацетон-аммиачного реагента и доводят дистиллированной водой до метки, затем пробы нагревают, охлаждают и проводят определение их оптической плотности, как указано в 5.4.1.2.

5.4.2 Определение формальдегида в сточной воде

5.4.2.1 В перегонную колбу вместимостью 250 см 3 вносят 200 см 3 пробы анализируемой сточной воды, добавляют 1 см 3 разбавленной серной кислоты (см. 5.3.4), затем соединяют элементы установки для перегонки формальдегида (см. приложение А), включают нагревание и отгоняют в мензурку около 2/3 объема жидкости. Отключают нагревание, охлаждают перегонную колбу (до прекращения кипения жидкости), после чего добавляют в перегонную колбу 100 см 3 дистиллированной воды и продолжают перегонку до конечного объема отгона 200 см 3 .

Полученный отгон фильтруют.

Примечание - Допускается использовать для перегонки формальдегида ротационный испаритель.

5.4.2.2 В мерную колбу вместимостью 25 см 3 вносят 15 - 20 см 3 отфильтрованного отгона (см. 5.4.2.1), добавляют 5 см 3 ацетилацетон-аммиачного реагента (см. 5.3.3) и доводят отфильтрованным отгоном до метки.

Холостую пробу готовят по 5.3.5.1 одновременно с серией проб анализируемой сточной воды.

Затем подготовленные пробы анализируемой сточной воды и холостую пробу нагревают и охлаждают, как указано в 5.3.5.2, после чего измеряют их оптическую плотность при длине волны (414 ± 20) нм относительно дистиллированной воды.

5.4.2.3 Если измеренное значение оптической плотности пробы анализируемой сточной воды превышает верхнюю границу градуировочной характеристики, то в мерную колбу вместимостью 25 см 3 вносят меньший объем отфильтрованного отгона (V a н), но не менее 0,5 см 3 , добавляют 5 см 3 ацетилацетон-аммиачного реагента, доводят дистиллированной водой до метки и продолжают измерение по 5.4.2.2. При превышении и в этом случае верхней границы градуировочной характеристики следует повторить измерение по 5.4.2.2, взяв для перегонки по 5.4.2.1 меньшую аликвоту анализируемой пробы воды, V 2 (но не менее 10 см 3), разбавленную до 200 см 3 дистиллированной водой.

5.4.2.4 Определение значения фоновой поправки

В мерную колбу вместимостью 25 см 3 вносят объем отфильтрованного отгона, равный объему, взятому для проведения измерений проб анализируемой сточной воды (см. 5.4.2.2, 5.4.2.3), и доводят дистиллированной водой до метки, при этом ацетилацетон-аммиачный реагент не добавляют.

Измеряют оптическую плотность раствора при длине волны (414 ± 20) нм по отношению к дистиллированной воде. Полученное значение оптической плотности будет являться фоновой поправкой (А ф).

5.5 Обработка результатов измерений

5.5.1 При наличии компьютерной (микропроцессорной) системы сбора и обработки информации порядок обработки результатов определяется руководством (инструкцией) по эксплуатации.

5.5.2 При отсутствии компьютерной (микропроцессорной) системы сбора и обработки информации массовую концентрацию формальдегида в пробе анализируемой воды X, мг/дм 3 , рассчитывают по формулам:

Для питьевой и природной воды

где К - коэффициент градуировочной характеристики (см. 5.3.7);

А - измеренное значение оптической плотности пробы анализируемой воды за вычетом измеренного значения оптической плотности холостой пробы, единицы оптической плотности;

V к - вместимость мерной колбы, использованной при подготовке пробы анализируемой воды для измерения (в данном случае равен 25 см 3), см 3 ;

V 1 - объем отгона, см 3 ;

V 2 - объем пробы анализируемой воды, взятый на отгон, см 3 ;

V a н - объем отгона, взятый для измерений, см 3 ;

f - коэффициент, учитывающий степень отгонки формальдегида, определяют согласно 5.4.1.1 и 5.4.1.2, используя вместо пробы анализируемой воды раствор формальдегида, и рассчитывают по формуле

где С д - массовая концентрация раствора формальдегида, взятого на отгон, мг/дм 3 ;

С п - массовая концентрация формальдегида в отгоне, мг/дм 3 , рассчитанная по формуле

Примечание - Как правило, коэффициент f равен 1,2;

Для сточной воды

где A ф - значение фоновой поправки, измеренное по 5.4.2.4.

Рассчитанное по формуле (5) или (8) значение принимают за результат определения содержания формальдегида в пробе анализируемой воды.

5.6 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 1, при доверительной вероятности Р = 0,95.

Таблица 1 - Метрологические характеристики метода А

Р = 0,95) r, %

Р = 0,95) R , %

Р = 0,95) ±δ, %

Питьевая и природная вода

От 0,025 до 0,05 включ.

Св. 0,05 » 10,0 »

» 10,0 » 25,0 »

Сточная вода

От 0,05 до 10,0 включ.

Св. 10,0 » 400,0 »

Примечания

U отн при коэффициенте охвата k = 2.

Результаты межлабораторных сравнительных испытаний приведены в приложении Б.

5.7 Контроль качества результатов измерений

Контроль качества результатов измерений в лаборатории предусматривает проведение контроля стабильности результатов измерений с учетом требований ГОСТ Р ИСО 5725-6 (раздел 6) или .

5.8 Оформление результатов измерений

Результаты измерений регистрируют в протоколе испытаний, который оформляют в соответствии с требованиями ГОСТ ИСО/МЭК 17025 , при этом протокол испытаний должен содержать ссылку на настоящий стандарт с указанием метода определения.

Результаты измерений массовой концентрации формальдегида х , мг/дм 3 (при Р = 0,95), представляют в виде (при подтвержденном в лаборатории соответствии аналитической процедуры требованиям настоящего стандарта)

Х ± Δ либо Х ± U , (9)

где Δ - абсолютная погрешность измерений массовой концентрации формальдегида (при Р = 0,95), мг/дм 3 , рассчитываемая по формуле

Δ = 0,01 × δ × X, (10)

где δ - относительная погрешность измерения массовой концентрации формальдегида по таблице 1, %;

U - расширенная неопределенность при коэффициенте охвата k = 2, мг/дм 3 , рассчитываемая по формуле

U = 0,01 × U отн × X, (11)

где U отн - расширенная неопределенность (в процентах) при коэффициенте охвата k = 2 по таблице 1.

Допускается результат измерений представлять в виде

Х ± Δ лаб, мг/дм 3 , (12)

при условии Δ лаб < Δ, где Δ лаб - значение показателя точности измерений (доверительные границы абсолютной погрешности измерений при Р = 0,95), установленное при реализации настоящего метода в лаборатории и обеспечиваемое контролем стабильности результатов измерений;

X ± U л a б, мг/дм 3 , (13)

при условии U лаб < U, где U лаб - значение расширенной неопределенности, установленное при реализации настоящего метода в лаборатории с учетом или и обеспечиваемое контролем стабильности результатов измерений в лаборатории.

Численное значение результата определений и значение абсолютной погрешности (неопределенности) определений выражают не более чем двумя значащими цифрами.

6 Определение массовой концентрации формальдегида методом высокоэффективной жидкостной хроматографии (метод Б)

6.1 Сущность метода

Метод основан на взаимодействии формальдегида с 2,4-динитрофенилгидразином, экстракции полученного продукта (2,4-динитрофенилгидразона) гексаном, концентрировании экстракта и измерении массовой концентрации продукта реакции методом ВЭЖХ с УФ-детектором.

6.2 Средства измерений, вспомогательное оборудование, реактивы, материалы - по 5.2 со следующими уточнениями:

Жидкостный хроматограф с УФ-детектором, с градиентной системой подачи состава элюента, дозирующей петлей объемом 20 мм 3 или системой автоматического ввода пробы и компьютером с программным обеспечением для обработки хроматографических данных;

Колонка хроматографическая с фазой на основе силикагеля с привитыми группами С18, например, размером 250´3 мм, зернением 5 мкм и предколонкой RP-18 размером 4´4 мм, зернением 5 мкм;

Емкости стеклянные с герметичной завинчивающейся пробкой и тефлоновой прокладкой вместимостью 1,5 см 3 ;

Делительная воронка вместимостью 250 см 3 , воронка лабораторная, колбы плоскодонные вместимостью 100 см 3 , колбы круглодонные вместимостью не менее 100 см 3 , стаканы химические по ГОСТ 25336 ;

Натрий тиосульфат 5-водный по ГОСТ 27068 , ч. д. а.;

Натрий сернокислый (сульфат натрия) по ГОСТ 4166 , х. ч.;

2,4-динитрофенилгидразин с содержанием основного вещества не менее 98 %, CAS * : 119-26-6;

* CAS (Chemical Abstracts Service) - код международной классификации химической продукции.

Ацетонитрил для жидкостной хроматографии;

Гексан, х. ч.;

Вата медицинская гигроскопическая по ГОСТ 5556 .

6.3 Подготовка к проведению измерений

6.3.1 Проверка чистоты гексана

Чистоту гексана проверяют для каждой его новой партии следующим образом: в колбу ротационного испарителя вместимостью 100 см 3 вносят 45 см 3 гексана и упаривают досуха на ротационном испарителе. Затем к сухому остатку добавляют 0,5 см 3 ацетонитрила и анализируют в условиях хроматографирования по 6.4.2, при этом на хроматограмме не должны присутствовать пики, совпадающие по времени удерживания с 2,4-динитрофенилгидразоном формальдегида.

6.3.2 Проверка чистоты дистиллированной воды, используемой для приготовления вспомогательных и градуировочных растворов

Для контроля чистоты дистиллированной воды анализируют в соответствии с разделом 6.4 градуировочные растворы № 0 и № 1, приготовленные по 6.3.5, 6.3.6 и 6.3.7 с использованием проверяемой дистиллированной воды и гексана по 6.3.1. Сравнивают полученные значения площадей пиков 2,4-динитрофенилгидразона формальдегида на хроматограммах, при этом площадь пика на хроматограмме градуировочного раствора № 0 должна составлять не более 1/3 площади пика на хроматограмме градуировочного раствора № 1. В случае невыполнения данного условия дистиллированную воду заменяют.

6.3.3 Приготовление раствора 2,4-динитрофенилгидразина

В мерную колбу вместимостью 100 см 3 вносят навеску массой (220 ± 20) мг 2,4-динитрофенилгидразина и доводят ацетонитрилом до метки.

Срок хранения приготовленного раствора при температуре от 2 °С до 8 °С - не более 3 мес.

6.3.4 Приготовление раствора ортофосфорной кислоты

Мерную колбу вместимостью 100 см 3 заполняют примерно на 1/3 ее объема дистиллированной водой по 6.3.2, осторожно приливают 12,5 см 3 ортофосфорной кислоты, перемешивают и доводят содержимое колбы до метки дистиллированной водой по 6.3.2.

Срок хранения приготовленного раствора не ограничен.

6.3.5 Приготовление основного раствора формальдегида массовой концентрации 100 мг/дм 3

В мерную колбу вместимостью 10 см 3 вносят 1 см 3 СО состава раствора формальдегида с номинальной массовой концентрацией 1 мг/см 3 (см. 5.2), доводят содержимое колбы до метки дистиллированной водой по 6.3.2.

Срок хранения приготовленного раствора в герметично закрытой мерной колбе при температуре от 2 °С до 8 °С - не более 1 мес. Перед использованием раствор выдерживают при комнатной температуре не менее 20 мин.

Примечание - Допускается использовать СО состава раствора формальдегида другого номинального значения массовой концентрации при условии приготовления градуировочных растворов с указанными значениями концентрации формальдегида.

6.3.6 Приготовление рабочего раствора формальдегида массовой концентрации 10 мг/дм 3

Рабочий раствор формальдегида с массовой концентрацией 10 мг/дм 3 готовят разбавлением дистиллированной водой по 6.3.2 в 10 раз основного раствора формальдегида (см. 6.3.5). Например, для приготовления 10 см 3 раствора в мерную колбу вместимостью 10 см 3 вносят 1 см 3 раствора по 6.3.5 и доводят содержимое колбы до метки дистиллированной водой по 6.3.2.

Раствор готовят в день использования.

6.3.7 Приготовление градуировочных растворов

В мерные колбы вместимостью 100 см 3 вносят примерно на 1/3 их объема дистиллированную воду по 6.3.2, добавляют соответствующие объемы основного или рабочего растворов формальдегида (см. таблицу 2) и доводят содержимое колб до метки дистиллированной водой по 6.3.2. В одну из мерных колб растворы формальдегида не вносят, градуировочный раствор, не содержащий формальдегида (с массовой концентрацией формальдегида, равной нулю), обозначен в таблице 2 номером 0.

Таблица 2 - Градуировочные растворы

Номер градуировочного раствора

Объем, мм 3

Массовая концентрация формальдегида в градуировочном растворе, мг/дм 3

основного раствора формальдегида по 6.3.5

рабочего раствора формальдегида по 6.3.6

Градуировочные растворы готовят в день использования.

6.3.8 Подготовка прибора

Подготовку хроматографа к работе проводят в соответствии с руководством (инструкцией) по эксплуатации. Рекомендуемыми являются следующие параметры хроматографирования:

Скорость элюирования - 0,5 см 3 /мин;

Регистрация хроматограммы на длине волны 360 нм при ширине спектральной полосы 4 нм;

Объем вводимой пробы - 20 мм 3 .

Хроматографирование проводят в градиентном режиме подачи элюента по программе, приведенной в таблице 3.

Таблица 3 - Режим подачи элюентов

6.3.9 Градуировка прибора

6.3.9.1 Подготовка градуировочных растворов к измерению

Градуировочные растворы готовят к измерению следующим образом: в плоскодонную колбу вместимостью 100 см 3 вносят 50 см 3 конкретного градуировочного раствора (см. 6.3.7), с помощью пипеточного дозатора добавляют 1 см 3 раствора 2,4-динитрофенилгидразина в ацетонитриле (см. 6.3.3) и 1 см 3 раствора ортофосфорной кислоты (см. 6.3.4), перемешивают, выдерживают при комнатной температуре в течение 25 мин, затем содержимое колбы переносят в делительную воронку вместимостью 250 см 3 и проводят трехкратную экстракцию гексаном порциями по 15 см 3 . Экстракт собирают в коническую колбу вместимостью 100 см 3 , осушают над сульфатом натрия в течение 10 мин, после чего фильтруют через слой ваты и собирают в круглодонную колбу. Экстракт упаривают на ротационном испарителе досуха, добавляют с помощью дозатора 0,5 см 3 ацетонитрила и переносят растворенный экстракт в стеклянную емкость (виалу) вместимостью 1,5 см 3 , снабженную плотно завинчивающейся пробкой и тефлоновой прокладкой.

6.3.9.2 Проведение градуировки

Каждый полученный экстракт (см. 6.3.9.1) анализируют не менее двух раз при установленных параметрах хроматографирования по 6.3.8.

Полученные хроматограммы обрабатывают с использованием компьютерной системы обработки данных прибора. Определяют абсолютное время удерживания 2,4-динитрофенилгидразона и устанавливают градуировочную характеристику в виде зависимости площади пика от массовой концентрации формальдегида в градуировочном растворе. Коэффициент линейной корреляции полученной градуировочной характеристики должен быть не менее 0,98.

6.3.10 Контроль стабильности градуировочной характеристики

Контроль стабильности градуировочной характеристики проводят для каждой серии анализируемых проб воды, а также при замене хроматографической колонки, изменении условий хроматографического разделения и после ремонта прибора. Для контроля стабильности градуировочной характеристики используют один из градуировочных растворов по 6.3.7, подготовленный к анализу по 6.3.9.1. Хроматографирование экстракта градуировочного раствора проводят не менее двух раз при установленных по 6.3.8 параметрах хроматографирования.

Градуировочную характеристику считают стабильной при выполнении условия:

где С изм - измеренное значение массовой концентрации формальдегида в контрольном градуировочном растворе, мг/дм 3 ;

С к - значение массовой концентрации формальдегида в контрольном градуировочном растворе (см. 6.3.7), мг/дм 3 ;

G - норматив контроля стабильности градуировочной характеристики, равный:

17 % - для массовой концентрации формальдегида от 0,002 до 0,025 мг/дм 3 включительно;

15 % - для массовой концентрации формальдегида свыше 0,025 до 0,1 мг/дм 3 включительно.

Если условие стабильности градуировочной характеристики не выполняется, то повторяют контроль с использованием другого градуировочного раствора по 6.3.7, подготовленного к анализу аналогично 6.4.1. В случае повторного невыполнения условия (14) градуировку прибора проводят заново.

6.4 Проведение измерений

6.4.1 В плоскодонную колбу вместимостью 100 см 3 вносят 50 см 3 пробы анализируемой воды и выполняют последовательность операций согласно 6.3.9.1.

Срок хранения экстракта пробы анализируемой воды при температуре от 2 °С до 8 °С - не более 7 су т.

Перед анализом экстракт пробы анализируемой воды выдерживают при комнатной температуре не менее 20 мин.

6.4.2 Хроматографический анализ экстракта пробы анализируемой воды (см. 6.4.1) проводят при установленных по 6.3.8 параметрах хроматографирования.

6.4.3 Если измеренное значение массовой концентрации формальдегида в экстракте пробы анализируемой воды более 0,1 мг/дм 3 , проводят разбавление экстракта (см. 6.4.1) ацетонитрилом, но не более чем в 100 раз, следующим образом: в виалу вносят аликвоту экстракта (V a), добавляют ацетонитрил до объема 1 см 3 , перемешивают и затем повторяют хроматографический анализ по 6.4.2.

6.5 Обработка результатов измерений

6.5.1 Идентификацию 2,4-динитрофенилгидразона формальдегида проводят по абсолютному времени удерживания, определенному при градуировке прибора по 6.3.9.

6.5.2 При помощи программного обеспечения прибора по градуировочной характеристике, установленной по 6.3.9, определяют массовую концентрацию формальдегида в экстракте пробы анализируемой воды С , мг/дм 3 .

Массовую концентрацию формальдегида в пробе анализируемой воды X,

X = C × d , (15)

где С - массовая концентрация формальдегида в экстракте (см. 6.4.1) или в разбавленной аликвоте экстракта (см. 6.4.3) пробы анализируемой воды, мг/дм 3 ;

d - коэффициент разбавления экстракта, рассчитываемый по формуле

где V э - объем экстракта пробы анализируемой воды в ацетонитриле, равный 0,5 см 3 ;

V a - объем аликвоты экстракта пробы анализируемой воды в ацетонитриле, взятый для разбавления, см 3 .

Примечание - Если пробу анализируемой воды не разбавляли, то d принимают равным 1.

Рассчитанное по формуле (15) значение принимают за результат определения содержания формальдегида в пробе анализируемой воды.

6.6 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 4, при доверительной вероятности Р = 0,95.

Таблица 4 - Метрологические характеристики метода Б

Диапазон измерений массовой концентрации формальдегида, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений при Р = 0,95) r, %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя единичными результатами измерений, полученными в условиях воспроизводимости при Р = 0,95) R, %

Показатель точности (границы относительной погрешности при вероятности Р = 0,95) ± δ, %

От 0,002 до 0,025 включ.

Св. 0,025 до 10 включ.

Примечания

1 Значение предела повторяемости используют для внутреннего контроля качества результатов измерений.

2 Установленные численные значения границ относительной погрешности соответствуют численным значениям расширенной неопределенности U отн при коэффициенте охвата k = 2.

6.7 Контроль показателей качества результатов измерений - аналогично 5.7.

6.8 Оформление результатов измерений - аналогично 5.8, при этом используют показатели точности по таблице 4.

7 Определение массовой концентрации формальдегида флуориметрическим методом (метод В)

7.1 Сущность метода

Метод основан на взаимодействии формальдегида с 1,3-циклогександионом в среде уксуснокислого аммония с образованием соединения, флуоресцирующего в диапазоне длин волн от 450 до 480 нм при возбуждении в диапазоне длин волн от 380 до 410 нм.

Для устранения мешающих влияний формальдегид отгоняют с водяным паром.

7.2 Средства измерений, вспомогательное оборудование, реактивы, материалы - по 5.2 со следующими уточнениями:

Флуориметр, спектрофлуориметр, анализатор жидкости люминесцентный (далее - прибор), предназначенный для регистрации интенсивности флуоресценции в диапазоне длин волн от 450 до 480 нм при возбуждении в диапазоне длин волн от 380 до 410 нм;

Емкости стеклянные термостойкие с завинчивающейся крышкой (виалы) вместимостью 10 см 3 ;

1,3-циклогександион, х. ч.;

7.3 Подготовка к проведению измерений

Дистиллированную воду, применяемую для приготовления рабочих растворов формальдегида (см. 7.3.2) и раствора 1,3-циклогександиона (см. 7.3.3), кипятят в течение 15 мин, охлаждают и хранят в закрытой стеклянной емкости не более 3 сут. Не допускается использовать крышки, изготовленные из фенолформальдегидных смол.

7.3.1 Приготовление рабочих растворов формальдегида

Рабочие растворы формальдегида №№ 1 - 5 готовят путем разбавления рабочего раствора формальдегида (см. 6.3.6) дистиллированной водой (см. 7.3) в мерных колбах заданной вместимости. Растворы готовят в день использования.

Пример приготовления рабочих растворов №№ 1 - 5 в мерных колбах вместимостью 100 см 3 и значения массовой концентрации формальдегида в них приведен в таблице 5.

Таблица 5 - Пример приготовления рабочих растворов формальдегида

7.3.2 Приготовление раствора 1,3-циклогександиона в аммиачно-ацетатном растворе

В мерную колбу вместимостью 100 см 3 вносят 10 г уксуснокислого аммония и 50 - 60 см 3 дистиллированной воды (см. 7.3), добавляют 2,5 см 3 концентрированной соляной кислоты, 10 мг 1,3-циклогександиона и доводят содержимое колбы до метки дистиллированной водой.

Срок хранения раствора в емкости из темного стекла при температуре 2 °С - 8 °С - не более 2 мес.

7.3.3 Приготовление градуировочных растворов

Градуировочные растворы готовят в емкостях с завинчивающейся крышкой (виалах). В шесть сухих емкостей вместимостью 10 см 3 (см. 7.2) вносят по 2 см 3 раствора 1,3-циклогександиона (см. 7.3.2), затем в первую емкость помещают 3,0 см 3 дистиллированной воды (см. 7.3), а в остальные - по 3,0 см 3 рабочих растворов формальдегида (см. таблицу 5), после чего емкости закрывают завинчивающимися крышками, помещают на водяную баню и нагревают в течение 45 мин при температуре 60 °С - 65 °С. Растворы охлаждают до комнатной температуры в холодной водяной бане или под струей холодной воды.

Градуировочный раствор, приготовленный в первой емкости (с массовой концентрацией формальдегида, равной нулю), является фоновым.

Градуировочные растворы готовят для каждой партии проб анализируемой воды одновременно с приготовлением проб анализируемой воды по 7.4.1.2.

Примечание - При проведении рутинных измерений допускается использовать меньшее число градуировочных растворов при условии обязательного приготовления фонового раствора и градуировочного раствора, подготовленного на основе рабочего раствора № 1 (см. таблицу 5).

7.3.4 Подготовка прибора

Подготовку прибора к работе проводят в соответствии с руководством (инструкцией) по эксплуатации прибора. Светофильтрами или монохроматорами выделяют спектральные диапазоны возбуждения и регистрации флуоресценции (см. 7.2).

7.3.5 Градуировка прибора

Измеряют не менее трех раз интенсивность флуоресценции подготовленных по 7.3.3 градуировочных растворов и фонового раствора.

Для каждого градуировочного раствора и фонового раствора рассчитывают среднеарифметическое значение полученных значений интенсивности флуоресценции и устанавливают градуировочную характеристику в виде зависимости среднеарифметических значений интенсивности флуоресценции за вычетом среднеарифметического значения интенсивности флуоресценции фонового раствора от массовой концентрации формальдегида аналогично 5.3.7.

7.3.6 Контроль приемлемости градуировочной характеристики - аналогично 5.3.8.

7.4 Порядок проведения измерений

7.4.1 Подготовка пробы анализируемой воды к измерению

7.4.1.1 В перегонную колбу перегонного устройства (см. приложение А) пипеткой или мерным цилиндром вносят 25 см 3 пробы анализируемой воды, добавляют 2 см 3 концентрированной серной кислоты и отгоняют от 10 до 12 см 3 дистиллята, затем отключают нагревание и охлаждают содержимое колбы перегонного устройства (до прекращения кипения жидкости). Затем в колбу перегонного устройства добавляют 10 - 12 см 3 дистиллированной воды (см. 7.3) и продолжают отгонку до получения 20 - 22 см 3 дистиллята.

Дистиллят переносят в мерную колбу вместимостью 25 см 3 и доводят до метки дистиллированной водой (далее - отгон).

7.4.1.2 В емкости с завинчивающимися крышками (виалы) вместимостью 10 см 3 вносят 2 см 3 раствора 1,3-циклогександиона (см. 7.3.2), добавляют 3 см 3 полученного по 7.4.1.1 отгона, после чего емкость помещают на водяную баню и нагревают в течение 45 мин при температуре 60 °С, при этом нагревание проводят одновременно с градуировочными растворами. Затем емкости с подготовленной пробой анализируемой воды охлаждают до комнатной температуры в холодной водяной бане или под струей холодной воды.

7.4.2 Подготовленные и охлажденные (см. 7.4.1.2) пробы анализируемой воды переносят из емкостей (виал) в кювету прибора и не менее трех раз измеряют интенсивность флуоресценции пробы.

Рассчитывают среднеарифметическое значение полученных значений, которое принимают за интенсивность люминесценции подготовленной пробы анализируемой воды.

7.4.3 Если измеренное значение интенсивности флуоресценции пробы анализируемой воды выходит за пределы градуировочной характеристики, то отгон (см. 7.4.1.1) разбавляют следующим образом: в мерную колбу вместимостью V к, см 3 , отбирают пипеткой аликвоту отгона V a , см 3 , разбавляют до метки дистиллированной водой и повторяют операции по 7.4.1.2, после чего проводят измерения интенсивности флуоресценции по 7.4.2. При этом объем аликвоты отгона должен быть не менее 1 см 3 , а коэффициент разбавления отгона (см. 7.5.2) не должен превышать 100.

7.5 Обработка результатов измерений

7.5.1 При наличии компьютерной (микропроцессорной) системы сбора и обработки информации порядок обработки результатов определяется руководством (инструкцией) по эксплуатации.

7.5.2 При отсутствии компьютерной (микропроцессорной) системы сбора и обработки информации массовую концентрацию формальдегида в пробе анализируемой воды X, мг/дм 3 , рассчитывают по формуле

Х = К × (I - I ф) × Q, (17)

где К - коэффициент градуировочной характеристики, рассчитываемый аналогично формуле (1), используя вместо оптической плотности значения интенсивности люминесценции градуировочных растворов, измеренных согласно 7.3.5;

I - интенсивность люминесценции подготовленной пробы анализируемой воды, условные единицы;

I ф - интенсивность люминесценции фонового раствора, условные единицы;

Q - коэффициент разбавления отгона (см. 7.4.3), рассчитываемый по формуле

где V к p - вместимость мерной колбы, взятой для разбавления отгона, см 3 ;

V a - объем аликвоты отгона, взятый для разбавления, см 3 .

Примечание - Если отгон не разбавляли, то Q принимают равным 1.

Рассчитанное по формуле (17) значение принимают за результат определения содержания формальдегида в пробе анализируемой воды.

7.6 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 6, при доверительной вероятности Р = 0,95. Результаты межлабораторных сравнительных испытаний приведены в приложении Б.

Таблица 6 - Метрологические характеристики метода В

Диапазон измерений массовой концентрации формальдегида, мг/дм 3

Предел повторяемости (относительное значение допускаемого расхождения между двумя результатами параллельных определений при Р = 0,95) r , %

Предел воспроизводимости (относительное значение допускаемого расхождения между двумя единичными результатами измерений, полученными в условиях воспроизводимости при Р = 0,95) R, %

Показатель точности (границы относительной погрешности при вероятности Р = 0,95) ± δ, %

Питьевая и природная вода

От 0,02 до 50 включ.

Сточная вода

От 0,02 до 50 включ.

Примечания

1 Значение предела повторяемости используют для внутреннего контроля качества результатов измерений.

2 Установленные численные значения границ относительной погрешности соответствуют численным значениям расширенной неопределенности U отн при коэффициенте охвата k = 2.

7.7 Контроль показателей качества результатов измерений - аналогично 5.7.

7.8 Оформление результатов измерений - аналогично 5.8, при этом используют показатели точности по таблице 6.

Установка для перегонки формальдегида

А.1 Принципиальная схема установки для перегонки формальдегида приведена на рисунке А.1.

1 - колбонагреватель (или электрическая плитка); 2 - проба анализируемой воды; 3 - перегонная колба;
4 - пробка стеклянная 14/23 по ГОСТ 25336 ; 5 - каплеуловитель КО-14/23(29/32)-60 ХС по ГОСТ 25336 ; ГОСТ 1770 - для метода А; мерный цилиндр или мензурку вместимостью 50 см 3 - для метода В.

Приложение Б
(справочное)

Результаты проведенных межлабораторных испытаний

Б.1 Межлабораторные испытания, проведенные по методам А и В в 2010 году (координатор: Закрытое акционерное общество «Роса», г. Москва), дали результаты, представленные в таблице Б.1.

Таблица Б.1

Шифр образца

Число лабораторий

Число выбросов

Опорное значение массовой концентрации формальдегида (по процедуре приготовления) С оп, мг/дм 3

Среднеарифметическое значение массовой концентрации формальдегида , мг/дм 3

Стандартное отклонение воспроизводимости S R , мг/дм 3

Относительное стандартное отклонение воспроизводимости s R .отн, %

Выход η, %

Примечания

1 Образец представлял собой раствор формальдегида в дистиллированной воде, приготавливаемый каждым участником по процедуре, установленной координатором.

2 Под выходом η понимают отношение к С оп, выраженное в процентах.

Библиография

Рекомендации по межгосударственной стандартизации РМГ 76-2004

Государственная система обеспечения единства измерений. Внутренний контроль качества результатов количественного химического анализа

Руководство ЕВРОХИМ/СИТАК «Количественное описание неопределенности в аналитических измерениях». 2-е издание, 2000, пер. с англ. - СПб, ВНИИМ им. Д.И. Менделеева, 2002 г.

Рекомендации по стандартизации Р 50.1.060-2006

Государственная система обеспечения единства измерений. Статистические методы. Руководство по использованию оценок повторяемости, воспроизводимости и правильности при оценке неопределенности измерений

Ключевые слова: вода питьевая, вода природная, вода сточная, методы испытаний, формальдегид

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184- ФЗ «О техническом регулировании» , а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0 - 2004 «Стандартизация в Российской Федерации. Основные положения» Сведения о стандарте 1. ПОДГОТОВЛЕН Открытым акционерным обществом «Научно-исследовательский центр контроля и диагностики технических систем» (ОАО «НИЦ КД») на основе собственного аутентичного перевода стандарта, указанного в пункте 4 2. ВНЕСЕН Техническим комитетом по стандартизации ТК 457 «Качество воздуха» 3. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 27 декабря 2007 г. № 590-ст 4. Настоящий стандарт идентичен международному стандарту ИСО 16000-3:2001 «Воздух замкнутых помещений. Часть 3. Определение содержания формальдегида и других карбонильных соединений. Метод активного отбора проб » (ISO 16000-3:2001 «Indoorair - Part 3: Determination of formaldehyde and other carbonyl compounds - Active sampling method»). При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении С 5. ВВЕДЕН ВПЕРВЫЕ Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок - в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1. Область применения 2. Нормативные ссылки 3. Сущность метода 4. Ограничения и мешающие вещества 4.1. Общие положения 4.2. Мешающее влияние озона 5. Требования безопасности 6. Аппаратура 7. Реактивы 8. Подготовка реактивов и картриджей 8.1. Очистка 2,4-динитрофенилгидразина 8.2. Приготовление ДНФГ-производного формальдегида 8.3. Приготовление исходных растворов ДНФГ-производного формальдегида 8.4. Подготовка картриджей с нанесенным на силикагель ДНФГ 9. Методика 9.1. Отбор проб 9.2. Холостые пробы 9.3. Анализ проб 10. Вычисление результатов измерений 11. Критерии эффективности и контроль качества результатов измерений 11.1. Общие положения 11.2. Стандартные рабочие процедуры 11.3. Эффективность системы ВЭЖХ 11.4. Потеря пробы 12. Прецизионность и неопределенность Приложение А (справочное) Прецизионность и неопределенность Приложение В (справочное) Точки плавления ДНФГ-производных карбонильных соединений Приложение С (справочное) Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам Библиография

Введение

Настоящий стандарт применяют при анализе воздуха замкнутых помещений при отборе проб согласно ИСО 16000-2. Стандарт применяют при определении содержания формальдегида и других карбонильных соединений. Стандарт был проверен в отношении 14 альдегидов и кетонов. Формальдегид представляет собой простейшее карбонильное соединение, состоящее из одного атома углерода, одного атома кислорода и двух атомов водорода. В чистом виде в мономолекулярном состоянии это бесцветный, с резким запахом, химически активный газ. Формальдегид применяют при производстве карбамидоформальдегидных полимеров, клеев и изоляционных пеноматериалов. Основным источником формальдегида в воздухе замкнутых помещений является его выделение древесно - стружечными плитами и изоляционными материалами, применяемыми при строительстве. Отбор проб для определения содержания формальдегида проводят путем прокачки воздуха через химически активную среду, что приводит к образованию производного соединения с более низким давлением пара, которое более эффективно удерживается в пробоотборном устройстве и может быть легче проанализировано. В настоящем стандарте установлена методика определения формальдегида и других карбонильных соединений, в основе которой лежит реакция этих соединений с 2,4- динитрофенил - гидразином, нанесенным на сорбент, для превращения их в соответствующие гидразоны, которые могут быть извлечены, а их содержание измерено с высокой чувствительностью, прецизионностью и точностью. Методику, приведенную в настоящем стандарте, также применяют для определения других карбонильных соединений, выделяемых в воздух растворителями, связующими материалами, косметическими средствами и другими источниками. В основе методики отбора проб, приведенной в настоящем стандарте, лежит метод ТО -11 А [ 1]. При применении методики, установленной в настоящем стандарте, следует учитывать, что формальдегид и некоторые другие карбонильные соединения являются высокотоксичными веществами [ 2].

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Дата введения - 2008-10-01

1. Область применения

Настоящий стандарт устанавливает метод определения формальдегида (НСНО) и других карбонильных соединений 1) (альдегидов и кетонов) в воздухе. Метод, применяемый для определения формальдегида, после соответствующей модификации используют для детектирования и количественного определения других карбонильных соединений (не менее 13 соединений). Метод применяют для определения формальдегида и других карбонильных соединений в диапазоне значений массовой концентрации приблизительно от 1 мкг / м 3 до 1 мг / м 3 . С помощью метода, приведенного в стандарте, получают усредненную по времени пробу. Метод может быть использован как при долгосрочном (от 1 до 24 ч), так и при краткосрочном (от 5 до 60 мин) отборе проб воздуха для определения содержания в нем формальдегида. Настоящий стандарт устанавливает методику отбора и анализа проб воздуха для определения содержания в нем формальдегида и других карбонильных соединений путем улавливания их из воздуха с помощью картриджей с нанесенным 2,4- динитрофенилгидразином (ДНФГ) и последующим анализе методом высокоэффективной жидкостной хроматографии (ВЭЖХ) с ультрафиолетовым (УФ) детектором [ 1], [ 3]. Приведенный в стандарте метод разработан специально для отбора и анализа проб для определения содержания в воздухе формальдегида с применением картриджа, заполненного адсорбентом, и последующей ВЭЖХ. Метод также применим для определения содержания в воздухе других альдегидов и кетонов. 1) В настоящем стандарте приведены распространенные названия соединений вместо наименований по номенклатуре ID РАС, приведенных в скобках: формальдегид (метаналь); ацетальдегид (этаналь); ацетон (пропан -2- он); масляный альдегид (бутаналь); кротоновый альдегид (2- бутеналь); изовалериановый альдегид (3- метилбутаналь); пропионовый альдегид (пропаналь); м - толуиловый альдегид (3- метилбензальдегид); о - толуиловый альдегид (2- метилбензальдегид); п - толуиловый альдегид (4- метилбензальдегид); валеральдегид пентаналь.Метод, приведенный в настоящем стандарте, применяют для определения следующих карбонильных соединений:

2. Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты: ИСО 9001:2000 Системы менеджмента качества. Требования ИСО 16000-1 Воздух замкнутых помещений. Часть 1. Отбор проб. Общие положения ИСО 16000-2 Воздух замкнутых помещений. Часть 2. Методология отбора проб формальдегида ИСО 16000-4 Воздух замкнутых помещений. Часть 4. Определение формальдегида. Метод диффузионного отбора проб ИСО 17025:2005 Общие требования к компетентности испытательных и калибровочных лабораторий

3. Сущность метода

В настоящем стандарте установлен метод прокачивания воздуха через картридж, содержащий силикагель с нанесенным ДНФГ. Метод основан на специфической реакции карбонильной группы анализируемого соединения с ДНФГ в присутствии кислоты с образованием стабильных производных (рисунок 1). Исходные альдегиды и кетоны определяют по их ДНФГ-производным методом ВЭЖХ с использованием УФ детектора или детектора на основе диодной матрицы. Другие карбонильные соединения могут быть определены указанными методами детектирования согласно 9.3.5. Настоящий стандарт содержит указания по подготовке картриджей для отбора проб на основе серийно выпускаемых картриджей для хроматографии, содержащих силикагель, путем введения в каждый картридж подкисленного ДНФГ. Рекомендуется применять серийно выпускаемые картриджи, содержащие силикагель с нанесенным ДНФГ, поскольку они более унифицированы и имеют низкий уровень холостых показаний. Однако серийно выпускаемые картриджи перед использованием необходимо проверить на соответствие требованиям настоящего стандарта. Другим преимуществом серийно выпускаемых картриджей является то, что они содержат силикагель с большим размером частиц, что приводит к меньшему падению давления воздуха в картридже. Такие картриджи с небольшим падением давления могут оказаться полезными для отбора проб воздуха в зоне дыхания с помощью насосов, работающих от элемента питания.

R - алкил или ароматическая группа для кетонов, или Н для альдегидов; R " - алкил или ароматическая группа для кетонов.

Рисунок 1 - Схема реакции карбонильных соединений с ДНФГ

4. Ограничения и мешающие вещества

4.1. Общие положения

Требования настоящего стандарта были подтверждены при отборе проб воздуха для расхода не более 1,5 л / мин. Данное ограничение расхода объясняется высоким падением давления (более 8 кПа при расходе 1,0 л / мин) через подготовленный пользователем картридж с силикагелем, размер частиц которого от 55 до 105 мкм. Такие картриджи не совместимы с насосами, работающими от элемента питания и используемыми для отбора проб воздуха в зоне дыхания (например, для целей обеспечения промышленной гигиены). Для отбора и анализа проб воздуха для определения в нем содержания формальдегида применяют специфическую методику отбора на твердый сорбент. Могут возникнуть трудности при реализации метода из - за присутствия некоторых изомеров альдегидов или кетонов, которые невозможно разделить с помощью ВЭЖХ при анализе других альдегидов и кетонов. Мешающими веществами также являются органические соединения, имеющие такое же время удерживания и значимое поглощение на длине волны 360 нм, как и ДНФГ - производное формальдегида. Влияние мешающих веществ можно устранить путем изменения условий разделения (например, с использованием других колонок ВЭЖХ или изменения состава подвижной фазы). Часто возникает проблема загрязнения ДНФГ формальдегидом. В таких случаях ДНФГ очищают путем многократной перекристаллизации из ацетонитрила, чистого в УФ области спектра. Перекристаллизацию проводят при температуре от 40 °С до 60 °С путем медленного выпаривания растворителя для получения кристаллов максимального размера. Содержание примесей карбонильных соединений в ДНФГ предварительно определяют методом ВЭЖХ, и оно должно быть не более 0,15 мкг на картридж. Картриджи для отбора проб с нанесенным ДНФГ не следует подвергать воздействию прямых солнечных лучей во избежание появления побочных пиков [ 4]. Данную методику не используют для точного количественного определения акролеина в воздухе. Неточные результаты количественного определения акролеина могут быть обусловлены появлением нескольких пиков его производных и нестабильностью отношений пиков [ 5]. NO 2 вступает в реакцию с ДНФГ. Высокое содержание МО 2 (например, при использовании газовых плит) может привести к появлению проблем, так как время удерживания его ДНФГ - производного может совпасть с временем удерживания ДНФГ - производного формальдегида в зависимости от колонки ВЭЖХ и параметров анализа [ 6], [ 7], [ 8].

4.2. Мешающее влияние озона

Следует предпринимать специальные меры, если в зоне отбора проб ожидается высокий уровень содержания озона в воздухе (например, от офисной копировальной техники). Наличие озона приводит к занижению результата определения содержания анализируемых веществ, так как в картридже он вступает в реакцию как с ДНФГ, так и с его производными (гидразонами) [ 9]. Степень мешающего влияния зависит от изменений содержания озона и карбонильных соединений во времени, а также от продолжительности отбора проб. Значительное занижение результата определения (отрицательное мешающее влияние озона) наблюдалось даже при значениях массовой концентрации формальдегида и озона, соответствующих чистому атмосферному воздуху (2 и 80 мкг / м 3 соответственно) [ 10]. В ходе анализа о присутствии озона в пробе можно судить по появлению новых соединений, время удерживания которых меньше времени удерживания гидразона формальдегида. На рисунке 2 приведены хроматограммы воздуха, обогащенного формальдегидом, с озоном и без озона. Наиболее простым решением для уменьшения мешающего влияния озона является его удаление до того, как отбираемый воздух достигнет картриджа. Это может быть обеспечено с помощью озоновой ловушки или скруббера для удаления озона, установленного перед картриджем. Используют серийно выпускаемые озоновые ловушки и скрубберы. Также озоновую ловушку можно изготовить из медной трубки длиной 1 м, внешним диаметром 0,64 см и внутренним диаметром 0,46 см, которую заполняют насыщенным водным раствором иодида калия, оставляют на несколько минут (например, 5 мин), затем раствор сливают и трубку высушивают в потоке чистого воздуха или азота в течение приблизительно 1 ч. Пропускная способность такого устройства для удаления озона составляет приблизительно 200 мкг / м 3 в час. Анализируемые альдегиды (формальдегид, ацетальдегид, пропионовый альдегид, бензальдегид и n - толуиловый альдегид), введенные в поток отбираемого воздуха в динамическом режиме, проходили через озоновую ловушку практически без потерь [ 11]. Серийно выпускаемые озоновые скрубберы, представляющие собой картридж, заполненный гранулированным иодидом калия массой от 300 до 500 мг, также являются эффективными для удаления озона [ 12].

X - неизвестное соединение; 0 - ДНФГ; 1 - формальдегид; 2 - ацетальдегид; а - с озоном; b - без озона

Рисунок 2 - Примеры хроматограмм для формальдегида в потоке воздуха с озоном и без озона

5. Требования безопасности

5.1. Настоящий стандарт не устанавливает все требования безопасности, которые следует соблюдать при его применении. Пользователь стандарта должен разработать соответствующие меры безопасности и охраны здоровья с учетом требований законодательных актов. 5.2. ДНФГ является взрывоопасным в сухом состоянии, поэтому с ним следует обращаться с особой осторожностью. Он также является токсичным веществом , проявляет мутагенное действие при проведении некоторых опытов и является раздражителем для глаз и кожи. 5.3. Хлорная кислота массовой долей менее 68 % является стабильной и не окисляется при комнатной температуре. Однако она легко подвергается дегидратации при температуре более 160°С, что может привести к взрыву при ее контакте со спиртами, древесиной, целлюлозой и другими окисляемыми материалами. Ее следует хранить в прохладном сухом месте и использовать с особой осторожностью только в вытяжном шкафу.

6. Аппаратура

Кроме обычного лабораторного оборудования, используют следующую аппаратуру. 6.1. Отбор проб 6.1.1. Картридж для отбора проб, заполненный силикагелем, с нанесенным ДНФГ, подготовленный в соответствии с разделом 8 или серийно выпускаемый. Картридж должен содержать не менее 350 мг силикагеля, а массовая доля нанесенного на него ДНФГ должна быть не менее 0,29 %. Отношение диаметра слоя силикагеля к его толщине должно быть не более 1:1. Допустимая нагрузка картриджа для определения формальдегида должна быть не менее 75 мкг, а эффективность улавливания - не менее 95 % при расходе воздуха 1,5 л/мин. Серийно выпускаются картриджи для отбора проб с низкими уровнями холостых показаний и высокими характеристиками. Примечание - При расходе воздуха 1,5 л/мин наблюдалось, что падение давления в подготовленном пользователем картридже приблизительно равно 19 кПа. Некоторые серийно выпускаемые картриджи с предварительно нанесенным ДНФГ характеризуются меньшим падением давления, что позволяет использовать насосы, работающие от элемента питания, для отбора проб в зоне дыхания. 6.1.2. Насос для отбора проб воздуха, обеспечивающий точный и прецизионный расход в диапазоне 1,0-1,5 л/мин. 6.1.3. Регулятор потока, расходомер, регулятор расхода или аналогичное устройство для измерения и регулирования расхода воздуха через картридж для отбора проб в диапазоне 0,50 - 1,20 л/мин. 6.1.4. Калибратор расхода, например ротаметр, мыльно-пенный пузырьковый расходомер или барабанный газовый счетчик с жидкостным затвором. 6.2. Подготовка проб 6.2.1. Контейнеры для картриджей, трубки из боросиликатного стекла (длиной от 20 до 125 мм) с навинчивающимися крышками из полипропилена или другие контейнеры, подходящие для транспортирования загруженных картриджей. 6.2.2. Полиэтиленовые перчатки для переноса картриджей с силикагелем. 6.2.3. Контейнеры для транспортирования, металлические коробки (вместимостью 4 л) с герметичной крышкой или другие подходящие контейнеры с воздушно-пузырчатой полиэтиленовой пленкой или другим пригодным заполнителем для фиксации и смягчения удара запечатанных контейнеров с картриджами. Примечание - Для хранения картриджей с пробами используют термосклеенный пластиковый мешок с прослойками из фольги, поставляемый в комплекте с серийно выпускаемыми картриджами с нанесенным ДНФГ. 6.2.4. Устройство для нанесения ДНФГ на картриджи Стойка для шприцев представляет собой пластину из алюминия (размерами 0,16 × 36 × 53 см) с четырьмя регулируемыми ножками. Пластина с круглыми отверстиями (число отверстий - 5 × 9), диаметр которых немного больше диаметра шприцев вместимостью 10 мл, симметрично расположенными от центра пластины, позволяет провести очистку, нанесение ДНФГ и (или) элюирование пробы для 45 картриджей (см. рисунок 3).

а - устройство для нанесения ДНФГ; b - устройство для сушки картриджей; 1_ стеклянный шприц вместимостью 10 мл; 2- стойка для шприцев;3 - картриджи; 4 - сливной стакан; 5 - поток N 2 ; 6 - штуцер для шприцев; 7 - стаканчик для отходов

Рисунок 3 - Устройства для нанесения ДНФГ и сушки картриджей для отбора проб

6.2.5. Устройство для сушки картриджей с устройствами для ввода газа и многочисленными штуцерами для стандартных шприцев (см. рисунок 3). Примечание - Аппаратура, указанная в 6.2.4 и 6.2.5, необходима только в том случае, если пользователь самостоятельно изготавливает картриджи с нанесенным ДНФГ 6.3. Анализ проб 6.3.1. Система ВЭЖХ состоит из емкости с подвижной фазой, насоса высокого давления, инжекторного крана (автоматического дозирующего устройства с объемом петли 25 мкл или другим подходящим объемом петли), колонки с обращенной фазой С-18 (например, длиной 25 см, внутренним диаметром 4,6 мм, размером частиц наполнителя 5 мкм), УФ детектора или детектора на основе диодной матрицы, работающего на длине волны 360 нм, системы обработки данных или электроизмерительного самопишущего прибора. ДНФГ-производное формальдегида определяют методом ВЭЖХ с обращенной фазой в изократическом режиме подачи элюента на основе показаний УФ детектора поглощения, работающего на длине волны 360 нм. Картриджи с холостой пробой десорбируют и анализируют аналогичным образом. Формальдегид и другие карбонильные соединения в пробе идентифицируют и определяют количественно путем сравнения их времени удерживания и высоты или площади пиков, полученных при анализе пробы и анализе градуировочных растворов. Примечание - Для этих целей подходит большинство серийно выпускаемых аналитических систем ВЭЖХ. 6.3.2 Шприцы и пипетки 6.3.2.1. Инжекторные шприцы ВЭЖХ вместимостью не менее чем в четыре раза превышающей объем петли (см. 6.3.1). 6.3.2.2. Шприцы вместимостью 10 мл, используемые для нанесения ДНФГ на картриджи (допускается использовать шприцы из полипропилена). 6.3.2.3. Штуцеры и заглушки, используемые для соединения картриджей с системой отбора проб и закрывания подготовленных картриджей. 6.3.2.4. Автоматический пипеточный дозатор, работающий по принципу положительного вытеснения, многократного дозирования с переменным объемом в диапазоне от 0 - до 10 мл (далее - пипеточный дозатор).

7. Реактивы

7.1. ДНФГ, перед использованием перекристаллизованный по крайней мере два раза из ацетонитрила, чистого в УФ области спектра. 7.2. Ацетонитрил, чистый в УФ области спектра (каждая порция растворителя должна быть проверена перед использованием). 7.3. Хлорная кислота, раствор с массовой долей 60 %, ρ = 1,51 кг/л. 7.4. Соляная кислота, раствор с массовой долей от 36,5 % до 38 %, ρ = 1,19 кг/л. 7.5. Формальдегид (формалин), раствор с массовой долей 37 %. 7.6. Альдегиды и кетоны, высокой степени чистоты, используемые для приготовления градуировочных образцов ДНФГ-производных (не обязательно). 7.7. Этанол или метанол для хроматографии. 7.8. Азот высокой степени чистоты. 7.9. Древесный гранулированный уголь (высшего качества). 7.10. Гелий высокой степени чистоты (высшего качества).

8. Подготовка реактивов и картриджей

8.1. Очистка 2,4-динитрофенилгидразина

С проблемой загрязнения ДНФГ формальдегидом сталкиваются довольно часто. Очистку ДНФГ проводят путем многократной перекристаллизации из ацетонитрила, чистого в УФ области спектра. Перекристаллизацию проводят при температуре от 40°С до 60°С путем медленного выпаривания растворителя для получения кристаллов максимального размера. Содержание примесей карбонильных соединений в ДНФГ, которое определяют до анализа методом ВЭЖХ, не должно превышать 0,15 мкг на картридж и на индивидуальное соединение. Пересыщенный раствор ДНФГ приготавливают путем кипячения раствора, содержащего избыток ДНФГ в 200 мл ацетонитрила, в течение приблизительно 1 ч. Затем отделяют и сливают надосадочную жидкость в химический стакан с крышкой, стоящий на горячей плитке, и постепенно охлаждают до 40°С-60°С. Выдерживают раствор при этой температуре (40°С) до тех пор, пока не испарится 95 % объема растворителя. Раствор фильтруют, а оставшиеся кристаллы дважды промывают ацетонитрилом объемом, превышающим видимый объем кристаллов в три раза. Кристаллы переносят в другой чистый химический стакан, добавляют 200 мл ацетонитрила, нагревают до кипения, и снова дают кристаллам вырасти при охлаждении до температуры 40°С-60°С, пока не испарится 95 % объема растворителя. Повторяют процесс промывания кристаллов. Берут аликвоту раствора и разбавляют в десятикратном объеме ацетонитрилом, затем подкисляют 1 мл хлорной кислоты (3,8 моль/л) на 100 мл раствора ДНФГ и проводят анализ методом ВЭЖХ в соответствии с 9.3.4. Предупреждение - Очистку ДНФГ необходимо проводить при включенной вентиляции с обязательным использованием средств защиты от взрыва (экран). Примечание - Кислота необходима для катализации реакции карбонильных соединений с ДНФГ. Для этих целей используют наиболее сильные неорганические кислоты, такие как хлорная, серная, фосфорная или соляная. В редких случаях использование соляной и серной кислот может привести к неблагоприятным последствиям. Приемлемым считают уровень содержания примесей гидразона формальдегида в перекристаллизованном ДНФГ, если значение массовой концентрации менее 0,025 мкг/мл или массовая доля примесей в ДНФГ менее 0,02 %. Если уровень содержания примесей является неприемлемым для конкретных условий отбора проб, то перекристаллизацию проводят повторно. Очищенные кристаллы переносят в стеклянную колбу, добавляют 200 мл ацетонитрила, закрывают пробкой, слегка встряхивают и дают отстояться в течение 12ч. Проводят анализ надосадочной жидкости на хроматографе методом ВЭЖХ в соответствии с 9.3.4. Если уровень содержания примесей является неприемлемым, то забирают пипеткой весь надосадочный раствор, затем к оставшимся очищенным кристаллам добавляют 25 мл ацетонитрила. Повторяют промывание кристаллов ацетонитрилом порциями по 20 мл; после каждого добавления порции ацетонитрила образующуюся надосадочную жидкость анализируют методом ВЭЖХ до тех пор, пока не будет подтвержден приемлемый уровень содержания примесей в надосадочной жидкости. Если уровень содержания примесей является приемлемым, добавляют 25 мл ацетонитрила, закрывают колбу пробкой, встряхивают и оставляют для дальнейшего использования. Полученный насыщенный раствор над очищенными кристаллами является основным исходным раствором ДНФГ. Сохраняют минимальный объем насыщенного раствора, необходимый для ежедневного использования, что позволяет свести к минимуму потери очищенного реактива при необходимости повторного промывания кристаллов для уменьшения уровня содержания примесей в случае предъявления более жестких требований к степени чистоты. Необходимый для проведения анализа объем основного исходного насыщенного раствора ДНФГ отбирают чистой пипеткой. Не следует выливать исходный раствор непосредственно из колбы.

8.2. Приготовление ДНФГ-производного формальдегида

К части перекристаллизованного ДНФГ добавляют достаточное количество соляной кислоты (2 моль/л) для получения почти насыщенного раствора. Добавляют к этому раствору формальдегид (формалин) в мольном избытке по отношению к ДНФГ. Фильтруют осадок ДНФГ-производного формальдегида, промывают его соляной кислотой (2 моль/л) и водой и оставляют на воздухе до высыхания. Проверяют степень чистоты ДНФГ-производного формальдегида путем определения его точки плавления (от 165°С до 166°С) или анализа методом ВЭЖХ. Если уровень содержания примесей является неприемлемым, производное перекристаллизовывают из этанола. Повторяют проверку степени чистоты и перекристаллизацию до тех пор, пока не будет достигнут приемлемый уровень чистоты (например, массовая доля основного компонента 99 %). ДНФГ-производное формальдегида хранят охлажденным (при температуре 4°С) в защищенном от света месте. Оно должно быть стабильным в течение, по крайней мере, 6 мес. Хранение в атмосфере азота или аргона продлевает срок годности ДНФГ-производного. Температуры точек плавления ДНФГ-производных некоторых карбонильных соединений приведены в приложении В. ДНФГ-производные формальдегида и других карбонильных соединений, используемые в качестве стандартных образцов, выпускаются серийно как в виде чистых кристаллов, так и в виде индивидуальных или смешанных исходных растворов в ацетонитриле.

8.3. Приготовление исходных растворов ДНФГ-производного формальдегида

Исходный раствор ДНФГ-производного формальдегида приготавливают путем растворения точно известного количества производного в ацетонитриле. Из исходного раствора готовят рабочий градуиро-вочный раствор. Содержание ДНФГ-производного формальдегида в градуировочных растворах должно соответствовать ожидаемому диапазону значений его массовой концентрации в реальных пробах. Исходные растворы с массовой концентрацией приблизительно 100 мг/л могут быть приготовлены путем растворения 10 мг твердого производного в 100 мл ацетонитрила. Эти растворы используют для приготовления градуировочных растворов содержащих соответствующие производные в диапазоне значений массовой концентрации от 0,5 до 20 мкг/мл. Все стандартные растворы хранят защищенными от света в герметично закрытых сосудах в холодильнике. Перед использованием растворы выдерживают при комнатной температуре до достижения теплового равновесия. По истечении четырех недель растворы должны быть заменены на свежие.

8.4. Подготовка картриджей с нанесенным на силикагель ДНФГ

8.4.1. Общие положения Процедуру проводят в лаборатории с очень низким содержанием альдегидов в воздухе. Всю стеклянную и пластиковую лабораторную посуду тщательно очищают и промывают в деионизированной воде и ацетонитриле, не содержащем альдегиды. Контакт реактивов с воздухом в лаборатории должен быть минимальным. При работе с картриджами следует надевать полиэтиленовые перчатки. 8.4.2. Раствор для нанесения ДНФГ С помощью пипетки вносят 30 мл насыщенного исходного раствора ДНФГ в мерную колбу вместимостью 1000 мл, добавляют 500 мл ацетонитрила и подкисляют 1,0 мл концентрированной соляной кислоты. Воздух над подкисленным раствором фильтруют через картридж с силикагелем с нанесенным ДНФГ для сведения к минимуму внесения в раствор загрязнения из воздуха лаборатории. Колбу встряхивают, затем раствор доводят до метки ацетонитрилом. Колбу закрывают, переворачивают, встряхивают несколько раз до тех пор, пока раствор не станет однородным. Переносят подкисленный раствор в пипеточный дозатор со шкалой от 0 до 10 мл. Из дозатора медленно сливают от 10 до 20 мл раствора в сливной стакан. Вводят аликвоту раствора в виалу и проверяют уровень содержания примесей в подкисленном растворе методом ВЭЖХ в соответствии с 9.3.4. Массовая концентрация формальдегида в растворе должна быть не более 0,025 мкг/мл. 8.4.3. Нанесение ДНФГ на силикагель в картридже Картридж вынимают из упаковки, подсоединяют короткий конец картриджа к шприцу вместимостью 10 мл, который помещают в устройство для нанесения ДНФГ как показано на рисунке 3а). При помощи пипеточного дозатора в каждый шприц вводят 10 мл ацетонитрила. Жидкость должна стечь самотеком. Пузырьки воздуха, появившиеся между шприцем и картриджем с силикагелем, удаляют с помощью ацетонитрила из шприца. Настраивают пипеточный дозатор, содержащий подкисленный раствор для нанесения ДНФГ, для введения по 7 мл в каждый картридж. Как только на выходе картриджа прекратится поток ацетонитрила, добавляют в каждый шприц по 7 мл раствора для нанесения ДНФГ. Раствор для нанесения ДНФГ стекает через картридж самотеком до тех пор, пока не прекратится поток на другом конце картриджа. Избыток жидкости на выходном отверстии каждого картриджа удаляют с помощью фильтровальной бумаги. Проводят сборку устройства для сушки картриджей (см. рисунок 3 b). На каждом выходе устанавливают предварительно подготовленный картридж с нанесенным ДНФГ (например, скруббер или «защитный» картридж). Такие «защитные» картриджи предназначены для удаления следов формальдегида, который может присутствовать в подаваемом азоте. Их подготавливают путем сушки нескольких заново пропитанных картриджей в соответствии с инструкциями, приведенными ниже, и используют для обеспечения чистоты остальных картриджей. Устанавливают переходник для картриджей (расширенный на конус с обоих концов, с внешним диаметром от 0,64 до 2,5 см, выполненный из фторуглеродной трубки, внутренним диаметром немного меньше внешнего диаметра входного отверстия картриджа) на длинный конец «защитного» картриджа. Отсоединяют картриджи от шприцев и подсоединяют короткие концы картриджей к свободным концам переходников, уже присоединенных к «защитным» картриджам. Через каждый картридж пропускают азот с расходом 300 - 400 мл/мин. Промывают внешние поверхности и выходные концы картриджей ацетонитрилом с помощью пипетки Пастера. По истечении 15 мин подачу азота прекращают, удаляют остатки ацетонитрила с внешних поверхностей картриджей и отсоединяют просушенные картриджи. Оба конца загруженных картриджей закрывают стандартными полипропиленовыми заглушками от шприцев и помещают закрытые картриджи в трубки из боросиликатного стекла с навинчивающимися крышками из полипропилена. На каждый индивидуальный стеклянный контейнер для хранения картриджа наносят номер серии и партии и хранят всю партию в холодильнике до момента использования. Установлено, что содержимое загруженных картриджей остается стабильным в течение не менее 6 мес. при хранении при температуре 4°С в защищенном от света месте.

9. Методика

9.1. Отбор проб

Проводят сборку системы отбора проб и убеждаются в том, что насос обеспечивает постоянный расход в течение всего периода отбора проб. Загруженные картриджи могут сохранять свои характеристики при отборе проб, если температура окружающей среды выше 10°С. При необходимости устанавливают скруббер или ловушку для озона (см. 4.2). Перед началом отбора проб проверяют герметичность системы. Закрывают входной (короткий) конец картриджа так, чтобы на выходе насоса не было потока воздуха. При этом расходомер не должен фиксировать поток воздуха через систему отбора проб. Во время необслуживаемых или продолжительных периодов отбора проб для поддерживания постоянного потока воздуха рекомендуется использовать регулятор потока или насос с функцией компенсации расхода при отборе проб в зоне дыхания. Регулятор потока настраивают таким образом, чтобы значение потока было не менее чем на 20 % ниже установленного максимального значения расхода воздуха через картридж. Примечание - Силикагель в картридже удерживается между двумя мелкопористыми фильтрами. Поток воздуха в ходе отбора проб может изменяться из-за оседания аэрозольных частиц на переднем фильтре. Изменение потока может быть значительным при отборе проб воздуха с большим содержанием взвешенных частиц. Устанавливают систему отбора проб (включая картридж для холостой пробы) и проверяют расход воздуха при значении, близком к ожидаемому. Обычно расход воздуха устанавливают в диапазоне 0,5 - 1,2 л/мин. Общее число молей карбонильных соединений в объеме отобранного воздуха не должно превышать количество ДНФГ в картридже (2 мг или 0,01 моль; от 1 до 2 мг в случае применения серийно выпускаемых предварительно загруженных картриджей). Обычно ориентировочная оценка массы аналита в пробе должна составлять менее 75 % массы ДНФГ, загруженного в картридж [от 100 до 200 мкг в случае НСНО с учетом мешающих веществ (см. раздел 4)]. Градуировку проводят с использованием мыльно-пенного пузырькового расходомера или барабанного газового счетчика с жидкостным затвором, подсоединенного к выходу потока, при условии герметичности системы. Примечание - Метод градуировки, не требующий герметичности системы после насоса, приведен в [ 13]. Для определения объема пробы фиксируют и записывают значение расхода в начале и в конце периода отбора пробы. Если период отбора пробы более 2 ч, то расход измеряют несколько раз в течение отбора пробы. Для наблюдения за расходом без вмешательства в процесс отбора проб в систему устанавливают ротаметр. Также допускается использовать насос для отбора проб с прямым измерением и непрерывной регистрацией значений расхода. Перед началом отбора проб загруженный картридж достают из герметичного металлического или другого подходящего контейнера для транспортирования. Перед подсоединением к побудителю расхода (аспиратору, насосу) картридж выдерживают при комнатной температуре до достижения теплового равновесия, не вынимая его из стеклянного контейнера. Этой же процедуре подвергают серийно выпускаемые предварительно загруженные картриджи. Надев полиэтиленовые перчатки, вынимают заглушку картриджа и подсоединяют его к побудителю расхода при помощи переходника. Картридж подсоединяют таким образом, чтобы его короткий конец оказался входным концом для пробы. Подсоединение серийно выпускаемых картриджей с предварительно нанесенным ДНФГ проводят в соответствии с инструкциями изготовителя. Некоторые серийно выпускаемые картриджи представляют собой герметичные стеклянные трубки. В этом случае необходимо отломить концы трубки с предварительным использованием стеклореза. Подсоединяют конец картриджа с меньшим количеством сорбента к линии отбора проб так, чтобы большее количество сорбента находилось на входе пробы воздуха. Соблюдают осторожность при обращении с отломанными концами трубки. Включают насос и устанавливают требуемое значение расхода. Обычно расход через один картридж составляет 1,0 л/мин, а в случае двух картриджей, соединенных последовательно, - 0,8 л/мин. Проводят отбор проб в течение установленного периода времени, при этом периодически фиксируют значения параметров отбора проб. Если при отборе проб температура окружающей среды ниже 10°С, то обеспечивают, чтобы картридж для отбора проб находился при более высокой температуре. При проведении отбора проб в разных погодных условиях - в холодные, влажные и сухие зимние месяцы, в жаркие и влажные летние месяцы - не было отмечено значительного влияния относительной влажности воздуха на результаты отбора проб. По окончании отбора проб выключают насос. Непосредственно перед его выключением проверяют расход воздуха. Если значения расхода воздуха в начале и конце периода отбора проб отличаются более чем на 15 %, то пробу маркируют как сомнительную. Сразу же после отбора проб картридж отсоединяют от системы отбора проб (надев полиэтиленовые перчатки), закрывают его пробками и помещают обратно в маркированный контейнер. Заклеивают контейнер фторопластовой лентой и помещают в металлический контейнер, содержащий слой гранулированного древесного угля толщиной от 2 до 5 см, или в другой подходящий контейнер с поглотителем. При необходимости для хранения картриджа с пробой используют термосклеенный пластиковый мешок с прослойками из фольги. До проведения анализа картридж c пробой хранят в холодильнике. Время хранения картриджа в холодильнике не должно превышать 30 дней. Если для проведения анализа пробу необходимо транспортировать в аналитическую лабораторию, то время хранения картриджа с пробой без холодильника должно быть сведено к минимуму и не превышать двух дней. Средний расход отбора проб q А, мл/мин, вычисляют по формуле

q A = / n , (1)

Где q 1 , q 2 , … q n - значения расхода в начале, промежуточных точках и конце отбора проб; n - число точек усреднения. Общий объем воздуха V m , л, отобранного при известных температуре и давлении в процессе отбора пробы, вычисляют по формуле

V m = (T 2 - T 1) q А /1000, (2)

Где Т 2 - время конца отбора проб; T 1 - время начала отбора проб; Т 2 - T 1 - продолжительность отбора проб, мин; q A - средний расход, мл / мин.

9.2. Холостые пробы

Для каждой серии проб необходимо провести анализ не менее одной холостой пробы, полученной в условиях отбора проб. Если серия включает в себя 10 - 20 проб, то число холостых проб должно быть не менее 10 % общего числа проб. Для определения необходимого числа холостых проб следует фиксировать общее число проб внутри серии или временного интервала. На месте отбора с картриджами для отбора холостых проб обращаются так же, как с картриджами для отбора реальных проб, за исключением самого процесса отбора проб. Отбор холостых проб должен соответствовать требованиям, приведенным в 9.1. Желательно также провести анализ оставленных в лаборатории картриджей с холостыми пробами для установления различий между загрязнением, которое может быть внесено в месте отбора проб и в лаборатории.

9.3. Анализ проб

9.3.1. Подготовка проб Пробы транспортируют в лабораторию в подходящем контейнере, содержащем слой гранулированного древесного угля толщиной от 2 до 5 см, и хранят их до проведения анализа в холодильнике. Пробы также можно хранить в индивидуальных контейнерах. Промежуток времени между отбором и анализом проб должен быть не более 30 дней. 9.3.2. Десорбция проб Картридж с пробой коротким концом (входным отверстием) подсоединяют к чистому шприцу. Для предотвращения попадания нерастворимых частиц в элюат направление потока жидкости во время десорбции должно совпадать с направлением потока воздуха во время отбора проб. Если элюат фильтруется перед проведением анализа методом ВЭЖХ, то можно проводить обратную десорбцию. Для каждой серии проб проводят анализ отфильтрованного чистого экстракта для подтверждения того, что на фильтре нет загрязнений. Шприц с подсоединенным картриджем помещают на стойку для шприцев. Проводят десорбцию ДНФГ-производных карбонильных соединений и не вступившего в реакцию ДНФГ, давая стечь 5 мл ацетонитрила из шприца самотеком через картридж в градуированную пробирку или мерную колбу вместимостью 5 мл. В зависимости от используемого для отбора проб картриджа возможен ввод других объемов ацетонитрила. Примечание - Свободный объем сухого картриджа с силикагелем составляет немного более 1 мл. Поток элюата может прекратиться до того, как весь ацетонитрил вытечет из шприца в картридж из-за присутствия пузырьков воздуха между фильтром картриджа и шприцем. В этом случае пузырьки воздуха удаляют посредством ввода ацетонитрила в шприц с помощью длинной пипетки Пастера. Раствор доводят ацетонитрилом до метки 5 мл. Колбу маркируют так же, как и пробу. Аликвоту вводят пипеткой в виалу с фторуглеродной мембраной. Аликвоту анализируют на содержание ДНФГ-производных карбонильных соединений методом ВЭЖХ. В качестве резервной возможен отбор второй аликвоты, которую хранят в холодильнике до тех пор, пока не будет завершен анализ и получены пригодные результаты анализа первой аликвоты. При необходимости вторую аликвоту используют для проведения подтверждающего анализа. При использовании для отбора проб стеклянных герметичных трубок, содержащих два слоя сорбента с нанесенным ДНФГ, отламывают конец трубки, находящийся ближе ко второму слою сорбента (выходной конец). Осторожно удаляют пружину и пробку из стекловаты, удерживающие слой сорбента. Высыпают сорбент в чистую стеклянную виалу вместимостью 4 мл с фторуглеродной мембраной или крышкой. Виалу маркируют как резервную часть пробы. Осторожно вынимают вторую пробку из стекловаты и высыпают оставшийся сорбент в другую виалу вместимостью 4 мл. Виалу маркируют как основную часть пробы. В каждую виалу пипеткой добавляют 3 мл ацетонитрила, закрывают виалы и оставляют на 30 мин, в течение которых виалы периодически встряхивают. 9.3.3. Градуировка ВЭЖХ Градуировочные растворы готовят путем растворения ДНФГ-производного формальдегида (см. 8.3) в ацетонитриле. Готовят индивидуальные исходные растворы массовой концентрацией 100 мг/л путем растворения 10 мг твердого производного в 100 мл подвижной фазы. По два раза проводят анализ каждого градуировочного раствора (не менее пяти различных значений массовой концентрации) и составляют таблицу зависимости значений выходных сигналов, соответствующих площади хроматографических пиков, от введенной массы соответствующего вещества (либо, что более удобно, от введенной массы ДНФГ-производного формальдегида при фиксированном объеме петли (см. рисунки 4 и 5)). В процессе градуировки выполняют операции, соответствующие операциям, проводимым при анализе пробы и установленным в 9.3.4 . Во избежание эффекта памяти хроматографа анализ начинают с раствора с наименьшей массовой концентрацией. При использовании УФ детектора или детектора на основе диодной матрицы должна быть получена линейная зависимость выходного сигнала при введении растворов массовой концентрацией в диапазоне 0,05 - 20 мкг/мл при вводимом объеме 25 мкл. Полученные результаты используют для построения градуировочного графика (см. рисунок 6). Градуировочную характеристику (зависимость выходного сигнала, соответствующего площади пика, от значения массовой концентрации), полученную методом наименьших квадратов, считают линейной, если коэффициент корреляции не менее 0,999. Значения времени удерживания для каждого аналита не должны отличаться друг от друга более чем на 2 %. После установления линейной градуировочной характеристики проводят ежедневную проверку ее стабильности с помощью градуировочного раствора со значением массовой концентрации, близким к ожидаемому значению каждого компонента, но не менее чем в 10 раз превышающим предел обнаружения. Определяемое при ежедневной проверке относительное изменение выходного сигнала не должно превышать 10 % для аналитов массовой концентрацией не менее 1 мкг/мл и 20 % - для аналитов массовой концентрацией приблизительно 0,5 мкг/мл. Если наблюдается большее изменение, необходимо провести повторную градуировку или построение нового градуировочного графика на основе свежеприготовленных градуировочных растворов.

Условия хроматографирования: колонка: С-18 с обращенной фазой; подвижная фаза: с объемным отношением 60 % ацетонитрила/40 % воды; детектор: УФ детектор, работающий на длине волны 360 нм; расход: 1 мл/мин; время удерживания: для ДНФГ-производного формальдегида приблизительно 7 мин; объем введенной пробы: 25 мкл.

Рисунок 4 - Пример хроматограммы ДНФГ - производного формальдегида

Условия хроматографирования: колонка: С-18 с обращенной фазой; подвижная фаза: с объемным отношением 60 % ацетонитрила/40 % воды; детектор: УФ детектор, работающий на длине волны 360 нм; расход: 1 мл/мин; время удерживания: для ДНФГ-производного формальдегида приблизительно 7 мин; объем введенной пробы: 25 мкл.

Рисунок 5 - Примеры хроматограмм ДНФГ-производного формальдегида при его различных массовых концентрациях

Условия хроматографирования: коэффициент корреляции: 0,9999; колонка: С-18 с обращенной фазой; подвижная фаза: с объемным отношением 60 % ацетонитри-ла/40 % воды; детектор: УФ детектор, работающий на длине волны 360 нм; расход: 1 мл/мин; время удерживания: для ДНФГ-производного формальдегида приблизительно 7 мин; объем введенной пробы: 25 мкл;

Рисунок 6 - Пример градуировочного графика для формальдегида

9.3.4. Анализ на содержание формальдегида методом ВЭЖХ Проводят сборку и градуировку системы ВЭЖХ в соответствии с 9.3.3, при этом типичными для системы будут: колонка: С-18, внутренним диаметром 4,6 мм, длиной 25 см, или эквивалентная; контролировать температуру колонки не обязательно; подвижная фаза: 60 % ацетонитрила/40 % воды (объемное отношение), изократическая; детектор: УФ детектор, работающий на длине волны 360 нм; расход: 1,0 мл/мин; время удерживания: для ДНФГ-производного формальдегида 7 мин - с использованием одной колонки С-18, 3 мин - с использованием двух колонок С-18; объем вводимой пробы: 25 мкл. Перед каждым анализом проверяют базовую линию детектора для обеспечения стабильных условий. Приготавливают подвижную фазу для ВЭЖХ путем смешивания 600 мл ацетонитрила и 400 мл воды, либо устанавливают соответствующие параметры для градиентного элюирования. Полученную смесь фильтруют через мембранный фильтр из полиэфира с размером пор 0,22 мкм в устройстве фильтрования под вакуумом, изготовленным только из стекла или фторопласта. Дегазируют отфильтрованную подвижную фазу путем продувки с использованием гелия от 10 до 15 мин (100 мл/мин) или путем нагревания до 60°С от 5 до 10 мин в лабораторной конической колбе, накрытой часовым стеклом. Для предотвращения образования пузырьков газа в ячейке детектора после него устанавливают постоянный ограничитель сопротивления (350 кПа) или короткую (15 - 30 см) трубку из фторопласта внутренним диаметром 0,25 мм. Подвижную фазу наливают в емкость для растворителя и устанавливают расход 1,0 мл/мин. Перед первым анализом насос должен проработать 20 - 30 мин. Детектор включают, по крайней мере, за 30 мин до начала проведения первого анализа. Выходной сигнал детектора регистрируют с помощью электроизмерительных самопишущих приборов или аналогичного устройства вывода. Для систем с ручным вводом проб набирают в чистый инжекционный шприц для ввода в хроматограф не менее 100 мкл пробы. Заполняют петлю крана-дозатора подвижной фазой (кран-дозатор должен быть установлен в положение «загрузка»), добавляя излишек пробы с помощью шприца. Чтобы начать хроматографирование, кран-дозатор переводят в положение «ввод пробы». Одновременно с вводом активируют систему обработки данных, включают и отмечают точку ввода на диаграммной ленте электроизмерительного самопишущего прибора. Приблизительно через 1 мин переводят кран-дозатор из положения «ввод пробы» в положение «загрузка», ополаскивают или промывают шприц и дозирующую петлю смесью ацетонитрил - вода для подготовки к анализу следующей пробы. Не допускается вводить растворитель в петлю крана-дозатора, когда кран находится в положении «ввод пробы». После элюирования ДНФГ-производного формальдегида (см. рисунок 4) прекращают регистрацию данных и вычисляют массовую концентрацию компонентов в соответствии с разделом 10. Система может быть использована для дальнейшего анализа проб после того, как будет достигнуто устойчивое положение базовой линии. Примечание - После нескольких анализов загрязнение колонки (о чем свидетельствует, например, увеличение давления при каждом последующем вводе пробы при заданном значении расхода и составе растворителя) может быть устранено промыванием ее 100 %-ным ацетонитрилом объемом, превосходящим объем колонки в несколько раз. Подобную защиту можно обеспечить, используя форколонки. Если значение массовой концентрации аналита выходит за пределы линейного участка градуировочной характеристики системы, пробу разбавляют подвижной фазой или вводят в хроматограф меньший объем пробы. Если время удерживания, полученное при предыдущих вводах пробы, не воспроизводится (предельно допустимое отклонение ± 10 %), то соотношение ацетонитрил-вода может быть увеличено или уменьшено для получения соответствующего времени удерживания. Если время удерживания слишком велико, то соотношение увеличивают; если слишком мало - соотношение уменьшают. При необходимости замены растворителя проводят повторную градуировку перед вводом пробы (см. 9.3.3). Примечание - Приведенные условия хроматографирования должны быть оптимизированы для определения формальдегида. Аналитику рекомендуется провести исследования с имеющейся системой ВЭЖХ для оптимизации условий хроматографирования для решения конкретной аналитической задачи. Также могут быть использованы ВЭЖХ системы с автоматическим вводом пробы и сбором данных. Полученную хроматограмму исследуют на предмет мешающего влияния озона в соответствии с 4.2 и рисунком 2. 9.3.5 Анализ других альдегидов и кетонов методом ВЭЖХ 9.3.5.1. Общие положения Оптимизация условий хроматографирования посредством использования двух колонок С-18, соединенных последовательно, и градиентного режима подачи элюента позволяет проводить анализ других альдегидов и кетонов, отобранных из воздуха. В частности, условия хроматографирования оптимизируют для разделения ацетона, пропионового альдегида и некоторых других альдегидов с более высокой молекулярной массой при продолжительности анализа приблизительно 1 ч. Состав подвижной фазы периодически изменяют по линейной градиентной программе для получения максимального разделения С3, С4 и бензальдегида в соответствующей области хроматограммы. Для этой цели разработана следующая градиентная программа: в момент ввода пробы изменяют объемное отношение растворов с 60 % ацетонитрила/40 % воды до 75 % ацетонитрила/25 % воды в течение 36 мин; до 100 % ацетонитрила - в течение 20 мин; 100 % ацетонитрила - в течение 5 мин; меняют направление линейного градиентного программирования со 100 % ацетонитрила до 60 % ацетонитрила/40 % воды в течение 1 мин; поддерживают объемное отношение 60 % ацетонитрила/40 % воды в течение 15 мин. 9.3.5.2. Анализ проб на другие карбонильные соединения Проводят сборку и градуировку системы ВЭЖХ в соответствии с 9.3.3. Типичными для системы будут: колонка: две колонки С-18, соединенные последовательно; подвижная фаза: ацетонитрил/вода; линейный градиентный режим; детектор: УФ детектор, работающий на длине волны 360 нм; расход: 1,0 мл/мин; градиентная программа: по 9.3.4 . Условия хроматографирования, приведенные выше, были оптимизированы для градиентных систем ВЭЖХ с УФ детектором или детектором на основе диодной матрицы, автоматическим пробоотборным устройством с объемом дозирующей петли 25 мкл, двумя колонками С-18 (4,6 × 250 мм) и электроизмерительным самопишущим прибором или электронным интегратором. Аналитику рекомендуется провести исследования на имеющейся системе ВЭЖХ с целью оптимизации условий хроматографирования для решения конкретной аналитической задачи. Оптимизация необходима, по крайней мере, для разделения акролеина, ацетона и пропионового альдегида. Примечание - Изготовители колонок обычно приводят рекомендации по оптимальным условиям разделения ДНФГ-производных для колонок с обращенной фазой. Эти рекомендации могут исключать необходимость использования двух колонок без ухудшения разделения карбонильных соединений. Карбонильные соединения в пробе определяют качественно и количественно путем сравнения их времени удерживания и площади пиков с аналогичными показателями для образцов сравнения ДНФГ-производных. Формальдегид, ацетальдегид, ацетон, пропионовый альдегид, кретоновый альдегид, бензальдегид и о-, м-, п-толуиловые альдегиды определяют с высокой степенью достоверности. Определение масляного альдегида является менее надежным из-за его совместного элюирования с изобутиральдегидом и метилэтилкетоном при установленных выше условиях хроматографирования. Типичная хроматограмма, полученная с ВЭЖХ системой с градиентным элюированием, приведена на рисунке 7. Массовую концентрацию индивидуальных карбонильных соединений определяют по 9.3.4 .

Идентификация пиков

Соединение

Массовая концентрация, мкг / мл

Формальдегид Ацетальдегид Акролеин Ацетон Пропионовый альдегид Кротоновый альдегид Масляный альдегид Бензальдегид Изовалеральдегид Валеральдегид о - Толуиловый альдегид м - Толуиловый альдегид л - Толуиловый альдегид Гексаналь 2 , 5- Д и мети л бензальдегид

Рисунок 7 - Пример хроматографического разделения ДНФГ - производных 15 карбонильных соединений

10. Вычисление результатов измерений

Общую массу аналита (ДНФГ-производного) для каждой пробы вычисляют по формуле

m d = m s - m b , (3)

Где m d - скорректированная масса ДНФГ - производного, извлеченного из картриджа, мкг; m s - нескорректированная масса картриджа с пробой, мкг:

m s = A s (c std /A std)V s d s ; (4)

m b - масса аналита в картридже с холостой пробой, мкг:

m b = A b (c std /A std)V b d b ; (5)

A s - площадь пика аналита, элюированного из картриджа с пробой, условные единицы; А b - площадь пика аналита, элюированного из картриджа с холостой пробой, условные единицы; A std - площадь пика аналита в градуировочном растворе для ежедневной градуировки, условные единицы; c std - массовая концентрация аналита в градуировочном растворе для ежедневной градуировки, м кг / мл; V s - общий объем элюата, полученного для картриджа с пробой, мл; V b - общий объем элюата, полученного для картриджа с холостой пробой, мл; d s - коэффициент разбавления элюата пробы: 1, если пробу не разбавляли повторно; V d / V a , если пробу разбавляли для того, чтобы выходной сигнал находился в области линейности детектора, где V d - объем после разбавления, мл; V a - аликвота, используемая при разбавлении, мл; d b - коэффициент разбавления холостой пробы, равный 1,0. Массовую концентрацию карбонильного соединения с A , нг/л, в пробе вычисляют по формуле

c А = m d (M c /M der)1000/V m , (6)

Где М с - молекулярная масса карбонильного соединения (для формальдегида равна 30); M der - молекулярная масса ДНФГ-производного (для формальдегида равна 210); V m - общий объем пробы воздуха замкнутого помещения, отобранной по 9.1, л. Примечание - Не рекомендуется использовать миллиардные и миллионные доли. Однако для удобства некоторых пользователей объемное отношение карбонильного соединения са в миллиардных долях (ppb) вычисляют по формуле

c A = c As ∙ 24,4/M c , (7)

Общий объем пробы воздуха V s , л, приведенный к температуре 25°С и давлению 101,3 кПа, вычисляют по формуле

V s = {( V m ρ A)/101,3}{298/(273 + Т А)}, (8)

Где ρ A - среднее атмосферное давление внутри замкнутого помещения, кПа; Т А - средняя температура окружающей среды в замкнутом помещении, °С. Если необходимо выразить содержание аналита в миллионных долях (млн -1) при стандартных условиях окружающей среды (температуре 25°С и давлении 101,3 кПа) для сопоставления с образцами сравнения, состав которых установлен в тех же величинах, отобранный объем не следует приводить к стандартным условиям.

11. Критерии эффективности и контроль качества результатов измерений

11.1. Общие положения

В настоящем разделе установлены меры, необходимые для обеспечения контроля качества результатов измерений, и руководство по соответствию критериям эффективности, которые должны быть выполнены. Пользователь стандарта должен выполнять требования ИСО 9001, ИСО 17025.

11.2. Стандартные рабочие процедуры

Пользователь стандарта должен разработать стандартные рабочие процедуры для следующих видов деятельности в лаборатории: сборка, градуировка и применение системы отбора проб с указанием изготовителя и модели используемого оборудования; подготовка, очистка, хранение и обработка реактивов, используемых при отборе проб, и самих проб; сборка, градуировка и применение системы ВЭЖХ с указанием марки и модели используемого оборудования; способ регистрации и обработки данных с указанием используемых аппаратных и программных средств ЭВМ. Описание стандартных рабочих процедур должно включать в себя поэтапные инструкции и быть доступными и понятными для персонала, работающего в лаборатории. Стандартные рабочие процедуры должны соответствовать требованиям настоящего стандарта.

11.3. Эффективность системы ВЭЖХ

Эффективность системы ВЭЖХ определяется эффективностью колонки η (число теоретических тарелок), которую вычисляют по формуле

η = 5,54(t r /w 1/2) 2 , (9)

Где t r - время удерживания аналита, с; w 1/2 - ширина пика по одному компоненту на половине высоты, с. Эффективность колонки должна быть не менее 5000 теоретических тарелок. Относительное стандартное отклонение выходного сигнала при повторных каждодневных вводах проб в систему ВЭЖХ не должно быть более ±10% для градуировочных растворов с массовой концентрацией аналита не менее 1 мкг/мл. При массовой концентрации некоторых карбонильных соединений не более 0,5 мкг/мл прецизионность повторных анализов может увеличиться до 20 %. Прецизионность времени удерживания должна быть в пределах ± 7 % в любой день проведения анализа.

11.4. Потеря пробы

Потеря пробы наблюдается при превышении допустимой нагрузки сорбента или если объемный расход превышает максимально допустимый для используемой системы отбора проб. Потерю пробы можно предотвратить путем установки двух картриджей для отбора проб, соединенных последовательно, с последующим анализом содержимого каждого из них, либо путем установки двухсекционного картриджа с сорбентом с последующим анализом обеих секций. Если количество аналита в резервной секции более 15 % количества аналита в основной секции, делают предположение о «проскоке» и точность полученных результатов подвергают сомнению.

12. Прецизионность и неопределенность

Так же, как и при анализе других соединений, на прецизионность и неопределенность результата определения содержания формальдегида в воздухе замкнутых помещений влияют два фактора: воспроизводимость аналитической процедуры и изменение во времени содержания аналита в воздухе. Считается, что последний фактор имеет гораздо большее влияние, чем первый, хотя трудно количественно оценить влияние изменения интенсивности источника и условий вентиляции. Общая информация о значениях погрешностей, относящихся к аналитической процедуре, приведена в приложении А.

Приложение А
(справочное)
Прецизионность и неопределенность

Была проведена оценка методики, аналогичной методике анализа, приведенной в настоящем стандарте. Прецизионность, относящаяся к аналитической процедуре, должна быть в пределах ± 10 % при массовой концентрации аналита не менее 1 мкг / мл. При массовой концентрации не более 0,5 мкг / мл прецизионность при повторных анализах некоторых карбонильных соединений может увеличиться до 25 %. В ходе круговых испытаний [ 14] - [ 16] была проведена оценка метода с использованием картриджей с силикагелем (с размером частиц от 55 до 105 мкм) с нанесенным ДНФГ, аналогичного методу, установленному в настоящем стандарте. Результаты проведенной оценки, приведенные ниже, могут быть использованы для оценивания эффективности использования данного метода для анализа воздуха замкнутых помещений. Две различные лаборатории использовали картриджи для проведения более 1500 измерений содержания формальдегида и других карбонильных соединений в атмосферном воздухе в рамках программы исследований, проводимой в 14 городах США [ 15], [ 16]. Прецизионность 45 повторных вводов градуировочного раствора ДНФГ - производного формальдегида в систему ВЭЖХ в течение 2 мес, выраженная как относительное стандартное отклонение, составила 0,85 %. По результатам трехкратного анализа каждой из 12 идентичных проб с картриджей с нанесенным ДНФГ был и получены значения содержания формальдегида, которые согласуются в пределах относительного стандартного отклонения 10,9 %. В круговых испытаниях принимал и участие 16 лабораторий США, Канады и Европы. При этих испытаниях был проведен анализ 250 картриджей с холостыми пробами, трех наборов по 30 картриджей стремя значениями содержания вводимых ДНФГ - производных и 13 серий картриджей, экспонированных в среде с выхлопными газами автомобилей [ 14] - [ 16]. Картриджи, соответствующие требованиям 4.2, были подготовлены одной лабораторией. Все пробы были случайным образом распределены между лабораториями, участвующими в круговых испытаниях. Результаты круговых испытаний обобщены и приведены в таблице А.1. Примечание - В ходе круговых испытаний не применялась стандартизованная методика анализа методом ВЭЖХ. Участники испытаний использовали те методики, основанные на ВЭЖХ, которые они используют на практике в своих лабораториях. Абсолютная величина разности, выраженной в процентах, между результатами двух серий измерений (отбор проб из одного и того же места), проведенных по исследовательской программе США в 1988 г., составила для формальдегида 11,8 % (n = 405), ацетальдегида - 14,5 % (n = 386) и ацетона - 16,7 % (n = 346) [ 15], [ 16]. В результате анализа двух проб, отобранных практически в одной точке в рамках данной программы на содержание формальдегида другой лабораторией, относительное стандартное отклонение составило 0,07, коэффициент корреляции - 0,98, неопределенность - минус 0,05 для формальдегида [ 15]. Соответствующие значения для ацетальдегида составили 0,12; 0,95 и минус 0,50, а для ацетона- 0,15; 0,95 и минус 0 ,54 [ 16]. Анализ картриджей после введения в них ДНФГ, проводимый одной лабораторией в течение года, показал, что средняя неопределенность составила 6,2 % для формальдегида (n = 14) и 13,8% для ацетальдегида (n = 13). Анализ 30 картриджей после введения в них ДНФГ, проводимый одной лабораторией в рамках данной программы, показал, что средняя неопределенность составила 1,0 % (в диапазоне от минус 49 % до плюс 28 %) для формальдегида и 5,1 % (в диапазоне от минус 38 % до минус 39 %) для ацетальдегида. Таблица А.1 - Результаты круговых испытаний

Тип пробы

Формальдегид

Ацетальдегид

Пропионовый альдегид

Бензальдегид

Картриджи с холостой пробой: альдегид, мкг rsd , % n Картридж с пробой 3): степень извлечения, % (rsd , %) низкий средний высокий n Пробы в окружающей среде с выхлопными газами автомобилей: альдегид, мг rsd , % n а) Низкий, средний и высокий уровни содержания введенного в картридж альдегида составляли приблизительно 0,5; 5 и 10 мкг соответственно. Примечание - В исследованиях принимали участие 16 лабораторий. Значения были получены на основе ряда данных после удаления из него резко отличающихся значений. Обозначения, принятые в таблице: rsd - относительное стандартное отклонение; n - число измерений.

Приложение В
(справочное)
Точки плавления ДНФГ-производных карбонильных соединений

Таблица В.1 - Точки плавления ДНФГ-производных карбонильных соединений

Наименование карбонильного соединения

Точка плавления ДНФГ - производного [ 17], °С

Ацетальдегид От 152 до 153 (168,5 [ 18], 168[ 19]) Ацетон От 125 до 127 (128 [ 18], 128[ 19]) Бензальдегид От 240 до 242 (235 [ 19]) Масляный альдегид От 119 до 120 (122 [ 19]) Кретоновый альдегид От 191 до 192 (190 [ 19]) 2,5- диметилбензальдегид От 216,5 до 219,5 Формальдегид 166 (167 [ 18], 166 [ 19]) Гексанальдегид От 106 до 107 Изовалеральдегид От 121, 5 до 123,5 Пропионовый альдегид От 144 до 145 (155 [ 19]) о - Толуиловый альдегид От 193 до 194 (от 193 до 194 [ 19]) м - Толуиловый альдегид 212 (212 [ 19]) n - Толуиловый альдегид От 234 до 236 (234 [ 19]) Валеральдегид От 108 до 108,5 (98 [ 19])

Приложение С
(справочное)
Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

Таблица С.1

Обозначение ссылочного международного стандарта

Обозначение и наименование соответствующего национального стандарта

ИСО 9001:2000 ГОСТ Р ИСО 9001- 2001 Системы менеджмента качества. Требования ИСО 16000-1:2004 ГОСТ Р ИСО 16000-1- 2007 Воздух замкнутых помещений. Часть 1. Отбор проб. Общие положения ИСО 16000-2:2004 ГОСТ Р ИСО 16000-2- 2007 Воздух замкнутых помещений. Часть 2. Отбор проб на содержание формальдегида. Основные положения ИСО 16000-4:2004 ГОСТ Р ИСО: 16000-4- 2007 Воздух замкнутых помещений. Часть 4. Определение формальдегида. Метод диффузионного отбора проб ИСО / МЭК 17025:2005 ГОСТ Р ИСО /МЭК 17025- 2006 Общие требования к компетентности испытательных и калибровочных лабораторий * Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Библиография

Method TO-11A, EPA-625/R-96-010b, Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, U.S. Environmental Protection Agency, Cincinnati, OH, 1996 Air Quality Guidelines for Europe. Copenhagen: WHO Regional Office for Europe. WHO Regional Publications. European series No. 23/1987 Revised values see webpages: www.who.int.peh, www.who.dk/envhlth/pdf/airqual.pdf Tejada, S. В., Evaluation pf silica gel cartridges coated in situ with acidified 2,4-dinitrophenylhydrazine for sampling aldehydes and ketones in air, Int. J. Environ. Anal. Chem., 26, 1986, pp. 167 - 185 Grosjean, D., Ambient levels of formaldehyde, acetaldehyde, and formic acid in southern California: Results of a one-year baseline study, Environ. Sci. Technol., 25, 1991, pp. 710 - 715 J.-O. Levin and R. Lindahl, Aldehyde measuring methods using DNPH-coated filters - Summary and conclusions, Proc. Workshop « Sampling Project » , 27 - 28 June, 1996, Mol, Belgium VDI 3862 Part 2 Gaseous Emission Measurement - Measurement of Aliphatic and Aromatic Aldehydes and Ketones - DNPH Method - Impinger Method VDI 3862 Part 3 Gaseous Emission Measurement - Measurement of Aliphatic and Aromatic Aldehydes and Ketones - DNPH Method - Cartridges Method A. Sirju and P.B. Shepson, Laboratory and field investigation of the DNPH cartridge technique for the measurement of atmospheric carbonyl compounds, Environ. Sci. Technol., 29, 1995, pp. 384 - 392 Arnts, R.R., and Tejada, S. В., 2,4-Dinitrophenylhydrazine-coated silica gel cartridge method for determination of formaldehyde in air: Identification of an ozone interference, Environ. Sci. Technol., 23, 1989, pp. 1428 - 1430 Sirju, A., and Shepson, P.B. Laboratory and field evaluation of the DNPH cartridge technique for the measurement of atmospheric carbonyl compounds, Environ. Sci. Technol., 29, 1995, pp. 384 - 392 R.G. Merrill, Jr., D-P. Dayton , P.L. O"Hara, and R.F. Jongleux, Effects of ozone removal on the measurement of carbonyl compounds in ambient air: Field experience using Method TO- 11, in Measurement of Toxic and Related Air Pollutants, Vol. 1, Air & Waste Management Association Publication VIP-21, Pittsburgh , PA , U.S.A. , 1991, pp. 51 - 60 T.E. Kleindienst, E.W. Corse, F.T. Blanchard, and W.A. Lonneman, Evaluation of the performance of DNPH-coated silica gel and C1 8 cartridges in the measurement of formaldehyde in the presence and absence of ozone, Environ. Sci. Technol., 32, 1998, pp. 124 - 130 EN 1232:1997 Workplace atmospheres - Pumps for personal sampling of chemical agents - Requirements and test methods ASTM D51 97-97 Standard Test Method for Determination of Formaldehyde and Other Carbonyl Compounds in Air (Active Sampler Methodology), Annual Book of ASTM Standards, 11.03, American Society for Testing and Materials, West Conshohoken , PA , U.S.A. , pp. 472 - 482 USEPA, 1 989 Urban airtoxics monitoring program: Formaldehyde results, Report No. 450/4-91/006. U.S. Environmental Protection Agency, Research Triangle Park, NC, U.S.A., January 1991 USEPA, 1990 Urban Air Toxics Monitoring Program: Carbonyl Results, Report No. 450/4-91/025, U.S. Environmental Protection Agency, Research Triangle Park, NC, U.S.A., July 1991 Certificate of Analysis, Radian International, Austin, TX, U.S.A Handbook of Chemistry and Physics, CRC, 18901 Cranwood Parkway, Cleveland, OH, U.S.A Organikum, Organisch-chemisches Grundpraktikum, Wiley-VCH, Weinheim, Germany
Ключевые слова: воздух, качество, замкнутое помещение, формальдегид, карбонильные соединения, отбор проб, анализ проб, метод высокоэффективной жидкостной хроматографии, ультрафиолетовый детектор

Формальдегид – бесцветный газ с резким запахом. Он широко применяется в качестве консерванта в косметической промышленности, в медицине, в текстильной, деревообрабатывающей, мебельной промышленности для производства фанеры, ДСП, при производстве полимерных материалов и в органическом синтезе.

НОРМЫ СОДЕРЖАНИЯ ФОРМАЛЬДЕГИДА В АТМОСФЕРНОМ ВОЗДУХЕ И ВОЗДУХЕ ЖИЛЫХ ПОМЕЩЕНИЙ

Основной источник формальдегида в атмосферном воздухе - выхлопные газы автомобилей. Существует также естественный фон, возникающий в результате фотохимических процессов.

Предельно допустимые концентрации формальдегида в атмосфере и в воздухе жилых и общественных зданий установлены ГН 2.1.6.1338-03 «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населенных мест». Максимальная разовая концентрация ПДК составляет 0,05 мг/м3, среднесуточная - 0,01 мг/м3.

В 2014 году нормы по формальдегиду были пересмотрены в сторону увеличения. Раньше максимальная разовая и среднесуточная допустимые концентрации составляли 0,035 и 0,003 мг/м3 соответственно. Изменения свидетельствуют о том, что, во-первых, «фоновые» концентрации формальдегида в атмосферном воздухе растут, а во-вторых, в жилых помещениях, напичканных современными материалами, низкие концентрации сегодня почти уже не встречаются.

НОРМЫ СОДЕРЖАНИЯ ФОРМАЛЬДЕГИДА В ВОЗДУХЕ РАБОЧЕЙ ЗОНЫ

Максимальная разовая предельно допустимая концентрация формальдегида в воздухе рабочей зоны установлена ГН 2.2.5.1313-03 «Предельно допустимые концентрации (ПДК) вредных веществ в воздухе рабочей зоны». Она составляет 0,5мг/м3. Эта величина применяется только для производственных помещений, там, где имеется специфический источник выделения формальдегида в технологическом процессе.

Источником формальдегида на производстве могут служить технологические процессы, протекающие при производстве химического сырья, полимеров, строительных и отделочных материалов, текстиля и др.

В блоге компании Tion хорошо пишут о вреде формальдегида , о том, как он влияет на здоровье людей, и о том, как с ним бороться.

Мы же поговорим о том, как измеряются концентрации формальдегида в атмосферном воздухе и в воздухе помещений – квартир, офисов и на производстве.

МЕТОДИКИ ОПРЕДЕЛЕНИЯ ФОРМАЛЬДЕГИДА

Существует множество методик определения концентраций формальдегида в воздухе. Большая их часть основана на фотометрическом или флуориметрическом методах. Есть также и экзотические методики, основанные на методах газовой и ионной хроматографии. Кроме того, в некоторых случаях могут использоваться электрохимические датчики. Они обладают более низкой точностью, но позволяют проводить непрерывный мониторинг концентраций формальдегида в воздухе и получать результаты в реальном времени.
В независимой лаборатории Академлаб внедрены фотометрические и флуориметрические методики определения формальдегида:

  1. М 02-02-2005 «Методика выполнения измерений массовой концентрации формальдегида в воздухе рабочей зоны и атмосферном воздухе населенных мест флуориметрическим методом на анализаторе жидкости "Флюорат-02"»
  2. РД 52.04.824-2015 «Массовая концентрация формальдегида в пробах атмосферного воздуха. Методика измерений фотометрическим методом с фенилгидразином»
  3. МУК 4.1.2469-09 «Измерение массовых концентраций формальдегида в воздухе рабочей зоны фотометрическим методом»

ОТБОР ПРОБ ВОЗДУХА ДЛЯ АНАЛИЗА ВОЗДУХА НА ФОРМАЛЬДЕГИД

Порядок действий при отборе проб одинаков для обеих методик. Перед отбором проб готовятся поглотительные растворы и помещаются я в поглотительные приборы Зайцева. Поглотители соединяются последовательно с аспиратором. После этого фиксируются параметры микроклимата (температура, давление, влажность) и начинается отбор проб воздуха.

Ход анализа для обеих методик тоже принципиально не отличается. Отобранные пробы нагревают на водяной бане в течение 45 и 10 мин соответственно для флуориметрической и фотометрической методик. После остывания пробы анализируют на приборе.

Принцип анализа флуориметрическим методом основан на поглощении формальдегида поглотительным раствором и последующем определении содержания формальдегида по реакции образования флуорисцирующего производного с аммиаком и 1,3-циклогександионом.

Фотометрический метод основан на реакции взаимодействия формальдегида с ацетилацетоном в среде уксуснокислого аммония. Концентрация формальдегида определяется при помощи последующего фотометрического измерения оптической плотности продукта реакции, окрашенного в желтый цвет. По аналогичной методике проводится и анализ воды на содержание формальдегида.

Выбор методики, применяемой в каждом конкретном случае, зависит от объекта исследований и от ожидаемых концентраций.

Если у себя дома или на работе – в любом помещении - вы чихаете, чувствуете неприятный запах и раздражение кожи или слизистых, у вас слезятся глаза, то следует насторожиться: это все может быть результатом воздействия формальдегида. Звоните нам, мы проведем анализ воздуха на содержание вредных веществ!